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A two-step Bayesian propensity score approach is introduced that incorporates prior information in
the propensity score equation and outcome equation without the problems associated with simultaneous
Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-
step Bayesian propensity score is provided for three methods of implementation: propensity score strati-
fication, weighting, and optimal full matching. Three simulation studies and one case study are presented
to elaborate the proposed two-step Bayesian propensity score approach. Results of the simulation studies
reveal that greater precision in the propensity score equation yields better recovery of the frequentist-
based treatment effect. A slight advantage is shown for the Bayesian approach in small samples. Results
also reveal that greater precision around the wrong treatment effect can lead to seriously distorted results.
However, greater precision around the correct treatment effect parameter yields quite good results, with
slight improvement seen with greater precision in the propensity score equation. A comparison of cover-
age rates for the conventional frequentist approach and proposed Bayesian approach is also provided. The
case study reveals that credible intervals are wider than frequentist confidence intervals when priors are
non-informative.
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1. Introduction

It is well established that for the purposes of warranting causal claims, a major advantage of
experimental studies over quasi-experimental or observational studies is that the probability of an
individual being assigned to a treatment group is known in advance. However, when experimental
studies are not feasible, attention turns to the design of observational studies (Rosenbaum, 2002).
In observational studies “treatments” are naturally occurring and the selection of individuals into
these groups is governed by highly non-random and often unobservable processes.

In order to warrant causal inferences in the setting of observational studies, individuals in
treatment conditions should be matched as closely as possible on observed pre-treatment assign-
ment variables. In the case of unobserved pre-treatment variables, we must assume strong ig-
norability of treatment assignment (Rosenbaum & Rubin, 1983). Take, as an example, the effect
of full versus part-day kindergarten on reading competency, in which random assignment is not
feasible. To warrant a claim that full-day kindergarten boosts reading competency, a researcher
would need to find children in the part-day kindergarten group who are as similar as possible
on characteristics that might lead to selecting full- or part-day kindergarten. These characteris-
tics should have been measured (or hypothetically present) before the child’s selection into full-
or part-day kindergarten (e.g. parental socio-economic status). Various forms of pre-treatment
equating are available (see e.g. Rässler, 2002; Rubin, 2006). For this paper, we focus our atten-
tion on propensity score analysis as a method for equating groups on the basis of pre-treatment
variables that are putatively related to the probability of having been observed in one or the other
of the treatment conditions.
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Propensity score analysis (PSA) has been used in a variety of settings, such as economics,
education, epidemiology, psychology, and sociology. For comprehensive reviews see e.g. Guo
and Fraser (2010), Steiner and Cook (in press), and Thoemmes and Kim (2011). Historically,
propensity score analysis has been implemented within the frequentist perspective of statistics.
Within that perspective, a considerable amount of attention has been paid to the problem of
estimating the variance of the treatment effect. For example, early work on this problem by Rubin
and Thomas (1992a, 1992b, 1996) found that matching on the estimated propensity score resulted
in smaller variance compared to matching on the population propensity score. Thus, matching
on the estimated propensity score is more efficient than matching on the true propensity score.

Other estimators of the treatment effect variance using propensity score weighting or match-
ing approaches have been provided by several authors (Hirano, Imbens, & Ridder, 2003; Lunce-
ford & Davidian, 2004), but few real data applications of their proposed methods have been
available due to the requirement of large sample size and the computational complexity of the
variance estimator. A recent variance estimator of the treatment effect based on matching was
developed by Abadie and Imbens (2006), with an adjusted version developed by Abadie and Im-
bens (2009). Also, a bootstrap approach has been used to estimate the treatment effect variance
(Lechner, 2002; Austin & Mamdani, 2006). However, Abadie and Imbens (2008) have shown
that bootstrap inferences for the matching estimator are generally not valid due to the extreme
non-smoothness of nearest neighbor matching.

In addition to the literature on frequentist-based propensity score analysis, there also ex-
ists literature examining propensity score analysis from a Bayesian perspective. This perspec-
tive views parameters as random and naturally accounts for uncertainty in the propensity score
through the specification of prior distributions on propensity score model parameters. The pur-
pose of this paper is to develop a straightforward two-step Bayesian approach to propensity score
analysis, provide treatment effect and variance estimators and examine its behavior in the context
of propensity score stratification, weighting, and optimal full matching.

The organization of this paper is as follows. For purposes of completeness, we first pro-
vide the nomenclature of the potential outcomes framework of causal inference, as developed
by Rubin (1974). Next we review the conventional frequentist theory of propensity score analy-
sis, focusing on three methods by which the propensity score is implemented: (a) subclassifica-
tion, (b) weighting, and (c) optimal full matching. This is then followed by a discussion of the
Bayesian propensity score. We then present the design of three simulation studies and one real
data case study, followed by the results. The paper closes with the implications of our findings for
the practice of using propensity scores to provide covariate balance when estimating treatment
effects in observational studies.

2. The Neyman–Rubin Model of Causal Inference: Notation and Definitions

For this paper, we follow the general notation of the Neyman–Rubin potential outcomes
model of causal inference Neyman (1923) and Rubin (1974), see also Holland (1986). To begin,
let T be a treatment indicator, conveying the receipt of a treatment. In the case of a binary treat-
ment, T = {0,1}. For individual i, Ti = 1 if that individual received the treatment, and Ti = 0 if
the individual did not receive the treatment. The essential idea of the Neyman–Rubin potential
outcomes framework is that causal inference resides at the individual level. That is, for individ-
ual i, the goal, ideally, would be to observe the individual under receipt of the treatment and
under non-receipt of the treatment. More formally, the potential outcomes framework for causal
inference can be expressed as

Yi = TiY1i + (1 − Ti)Y0i , (1)
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where Yi is the observed outcome of interest for person i, Y1i is the potential outcome for indi-
vidual i when exposed to the treatment, and Y0i is the potential outcome for individual i when
not exposed to the treatment. However, as Holland (1986) points out, the potential outcomes
framework has a serious problem—namely, it is rarely possible to observe the values of Y0 and
Y1 on the same individual i, and therefore rarely possible to observe the effects of T = 1 and
T = 0. Holland refers to this as the fundamental problem of causal inference.

The statistical solution to the fundamental problem offered by Holland (1986) is to make use
of the population of individuals. In this case, two causal estimands may be of interest. The first
is the average treatment effect, γATE for the target population defined as

γATE = E(Y1) − E(Y0). (2)

Returning again to the full-day versus part-day kindergarten example, (2) compares the
effect of full-day kindergarten for those exposed to it, i.e. E(Y1|T = 1), to the effect of not
being exposed to full-day kindergarten and exposed to part-day kindergarten instead, that is,
E(Y0|T = 0). However, as noted by Heckman (2005) in most cases, the policy or clinical ques-
tion lies in comparing E(Y1|T = 1) to the counterfactual group E(Y0|T = 1). In this case, the
causal estimand of interest is the average treatment effect on the treated, ATT, defined as

γATT = E(Y1|T = 1) − E(Y0|T = 1). (3)

The essential difference between the ATE and ATT estimands can be seen by noting that
for the ATE estimand it is assumed that a unit is drawn from a target population and assigned
either to the treatment group or the control group. By contrast, the ATT estimand assumes that
an individual is assigned to the treatment group and the question concerns the outcome of that
individual had he/she been assigned to the control group. For this paper, we will concentrate on
estimates of the ATE.

3. The Propensity Score

It was noted above that an essential requirement for warranting causal inferences in obser-
vational studies is that the treatment and control groups should be matched on all relevant co-
variates. In the context of random assignment experiments, matching takes place (at least asymp-
totically) at the group level by virtue of the randomization mechanism. Moreover, under random
assignment, the randomization probabilities are known. Again, herein lies the power of the ran-
domized experiment—namely, treated and untreated participants are matched on all observed
and unobserved characteristics. In observational studies, the assignment mechanism is unknown,
and hence we must make due with matching on as many relevant observed covariates as we have
available. Thus, while matching on observed covariates is, in principle, attainable, there likely
remains differences between treated and untreated participants on unobserved characteristics.

Clearly, better balancing can be achieved with a larger number of covariates. However, it is
also the case that matching becomes prohibitively difficult as the number of covariates increases.
An approach to handling a large number of covariates is to develop a so-called balancing score.
Balancing scores are used to adjust treatment groups on the observed covariates so as to make
them more comparable. A balancing score b(z) is a function of the covariates z such that the con-
ditional distribution of z given the balancing score is identical for the treatment group and control
group. As noted by Rosenbaum and Rubin (1983), the finest balancing score b(z) is the vector of
all observed covariates z. Indeed, one or more balancing scores are used in a typical ANCOVA.
The coarsest balancing score is the propensity score e(z) which is a many-one function of the
covariates z (Rosenbaum & Rubin, 1983, pg. 42).
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More formally, consider first the potential outcomes model in (1). Under this model, the
probability that individual i receives the treatment can be expressed as

ei = p(T = 1|Y1i , Y0i , zi , ui), (4)

where ui contain unobserved covariates. Notice that in an observational study, (Y0i , Y1i , ui ) are
not observed. Thus, it is not possible to obtain the true propensity score. Instead, we estimate the
propensity score based on covariates z. Specifically,

ê(z) = p(T = 1|z), (5)

which is referred to as the estimated propensity score.
The estimated propensity score ê(z) has many important properties. Perhaps the most im-

portant property is the balancing property, which states that those in T = 1 and T = 0 with the
same ê(z) will have the same distribution on the covariates z. Formally, the balancing property
can be expressed as

p
{
z|T = 1, ê(z)

} = p
{
z|T = 0, ê(z)

}
, (6)

or equivalently as

T ⊥ z|ê(z). (7)

4. Implementation of the Propensity Score

In this section we describe three common approaches to the implementation of the propen-
sity score: (a) stratification on ê(z), (b) propensity score weighting, and (c) optimal full matching.

4.1. Stratification on ê(z)

There are numerous ways in which one can balance treatment groups on the observed co-
variates (see Rosenbaum & Rubin, 1983). For example, one approach would be to form strata
directly on the basis of the observed covariates. However, as the number of covariates increases,
the number of strata increases as well—such that it is unlikely that any given stratum would have
enough members of all treatment groups to allow for reliable comparisons. The approach advo-
cated in this paper is based on work by Cochran (1968) and utilizes subclassification into five
strata based on the estimated propensity score. Subclassification into five strata on continuous
distributions such as the propensity score has been shown to remove approximately 90 % of the
bias due to non-random selection effects (Rosenbaum & Rubin, 1983; see also Cochran, 1968).
However, for stratification on the propensity score to achieve the desired effect, the assumption
of no hidden biases must hold.

Assuming no hidden biases, Rosenbaum and Rubin (1983) proved that when units within
strata are homogeneous with respect to ê(z), then the treatment and control units in the same
stratum will have the same distribution on z. Moreover, Rosenbaum and Rubin showed that
instead of using all of the covariates in z, a certain degree of parsimony can be achieved by
using the coarser propensity score ê(z). Finally, Rosenbaum and Rubin showed that if there
are no hidden biases, then units with the same value on a balancing score (e.g., the propensity
score), but assigned to different treatments, will serve as each other’s control in that the expected
difference in the responses of the units is equal to the average treatment effect.
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4.2. Propensity Score Weighting

Still another approach to implementing the propensity score is based on weighting. Specif-
ically, propensity score weighting is based on the idea of Horvitz–Thompson sampling weights
(Horvitz & Thompson, 1952), and is designed to weight the treatment and control group partici-
pants in terms of their propensity scores. The details of this approach can be found in Hirano and
Imbens (2001), Hirano et al. (2003), and Rosenbaum (1987).

As before, let ê(z) be the estimated propensity score, and let T indicate whether an individual
is treated (T = 1) or not (T = 0). The weight used to estimate the ATE can be defined as

ω1 = T

ê(z)
+ 1 − T

1 − ê(z)
. (8)

Note that when T = 1, ω1 = 1/ê(z) and when T = 0, ω1 = 1/[1 − ê(z)]. Thus, this approach
weights the treatment and control group up to their respective populations.1

4.3. Optimal Full Matching on the Propensity Score

The third common approach for implementing the propensity score is based on the idea of
statistical matching (see e.g. Hansen, 2004; Hansen & Klopfer, 2006; Rässler, 2002; Rosenbaum,
1989). Following Rosenbaum (1989), consider the problem of matching a treated unit to a control
unit on a vector of covariates. In observational studies, the number of control units typically
exceeds the number of treated units. A matched pair is an ordered pair (i, j), with 1 ≤ i ≤ N and
1 ≤ j ≤ M denoting that the ith treated unit is matched with the j th control unit. As defined by
Rosenbaum (1989), “A complete matched pair is a set � of N disjoint matched pairs, that is, N

matched pairs in which each treated unit appears once, and each control unit appears either once
or not at all” (pg. 1024).

Rosenbaum suggests two aspects of a “good” match. The first aspect is based on the notion
of close matching in terms of a distance measure on the vector of covariates—for example,
nearest neighbor matching. Obtaining close matches becomes more difficult as the number of
covariates increases. Another aspect of a good match is based on covariate balance, for example,
obtained on the propensity score. If distributions on the propensity score within matched samples
are similar, then there is presumed to be balanced matching on the covariates.

For this paper, we consider optimal matching: an improvement on so-called greedy match-
ing. Greedy matching finds a control unit to be matched to the treatment unit on the basis of the
distance between those units alone. One form of the greedy algorithm works sequentially, start-
ing with a match of minimum distance, and then removes the control unit and treated unit from
further consideration. Then, the algorithm begins again. It is important to point out that greedy
matching does not revisit the match, and therefore does not attempt to provide the lowest overall
“cost” for the match.

Optimal matching, in contrast, proceeds much the same way as greedy matching. However,
rather than simply adding a match, and removing the control (and treatment) from further con-
sideration, optimal matching might reconsider a match if the total distance across matches is less
than if the algorithm proceeded. According to Rosenbaum (1989), optimal matching is as good
and often better than greedy matching. Indeed, although greedy matching can sometimes provide
a good answer, there is no guarantee that the answer will be tolerable—and often it can be quite
bad.

For this paper, we use the optimal full matching algorithm discussed in Hansen and Klopfer
(2006) and implemented in their R package optmatch (Hansen & Klopfer, 2006). In optimal full

1The weight used to obtain an estimate of the ATT can be written as ω2 = T + (1 − T )
ê(z)

1−ê(z)
. Thus, the controls

are weighted to the full sample using 1/[1 − ê(z)] and then further weighted to the treatment group using ê(z).
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matching, for each possible pair of units in control and treatment group with estimated propensity
score ê(z0) and ê(z1), respectively, the distance is calculated by the difference between the esti-
mated propensity scores, that is, |ê(z1) − ê(z0)|. The optimal full matching results are achieved
when the total distance of matched propensity scores between treatment group and control group
approaches the minimum. We do not utilize a caliper in this paper so that every observed unit is
allowed to be matched.

5. Bayesian Propensity Score Approaches

Having outlined the conventional implementation of the propensity score, we now turn to
more recent Bayesian approaches to the calculation of the propensity score. A recent system-
atic review by Thoemmes and Kim (2011) does not discuss Bayesian approaches to propensity
score analysis, and our review of the extant literature also reveals very few studies examining
Bayesian approaches to propensity score analysis. However, an earlier paper by Rubin (1985)
argued that because propensity scores are, in fact, randomization probabilities, these should be
of great interest to the applied Bayesian analyst.

Rubin contextualizes his arguments within the notion of the well-calibrated Bayesian
(Dawid, 1982). Dawid’s (1982) concept of calibration stems from the notion of forecasting within
the Bayesian perspective.2 Dawid uses weather forecasting as an example. Given a weather fore-
caster’s subjective probability regarding tomorrow’s weather, ω, she is well calibrated if, over a
large number of forecast sequences, p = ω, where p is the actual proportion of correct forecasts.3

In the context of propensity score analysis, Rubin (1985) argues that under the assumption
of strong ignorability and assuming that the propensity score ê(z) is an adequate summary of the
observed covariates z, then our applied Bayesian will be well calibrated. To be specific, because
the propensity score is the coarsest covariate that can be obtained and retain strong ignorability,
and because there will be more data dedicated to estimating the parameters of interest (as opposed
to the parameters associated with each covariate), the more reliable the forecasts—i.e. the better
calibrated our applied Bayesian will be.

Although Rubin (1985) provides a justification for why an applied Bayesian should be inter-
ested in propensity scores, his analysis does not address the actual estimation of the propensity
score equation or the outcome equation from a Bayesian perspective. In a more recent paper,
Hoshino (2008) argued that propensity score analysis has focused mostly on estimating the
marginal treatment effect and that more complex methods are needed to handle more realistic
problems. In response, Hoshino (2008) developed a quasi-Bayesian estimation method that can
be used to handle more general problems—and in particular, latent variable models.

More recently, McCandless, Gustafson, and Austin (2009) argued that the failure to account
for uncertainty in the propensity score can result in falsely precise estimates of treatment effects.
However, adopting the Bayesian perspective that data and parameters are random, appropriate
consideration of uncertainty in model parameters of the propensity score equation can lead to
a more accurate variance estimate of the treatment effect. In fact, it may be possible in many
circumstances to elicit priors on the covariates from previous research or expert opinion and, as
such, have a means of comparing different propensity score models for the same problem and
resolve model choice via Bayesian model selection measures such as the deviance information
criterion (Spiegelhalter, Best, Carlin, & van der Linde, 2002).

The paper by McCandless et al. (2009) provides an approach to Bayesian propensity score
analysis for observational data. Their approach involves treating the propensity score as a latent

2As Dawid (1982) points out, calibration is synonymous with reliability.
3The concept of calibration can be extended to credible interval forecasts (see Dawid, 1982).



DAVID KAPLAN AND JIANSHEN CHEN

variable and modeling the joint likelihood of propensity scores and responses simultaneously in
one Bayesian analysis via an MCMC algorithm. From there, the marginal posterior probability of
the treatment effect can be obtained that directly incorporates uncertainty in the propensity score.
Using a simulation study and a case study, McCandless et al. (2009) found that weak associations
between the covariates and the treatment led to greater uncertainty in the propensity score and
that the Bayesian subclassification approach yields wider credible intervals.

Following the McCandless et al. (2009) study, An (2010) presented a Bayesian approach that
jointly models both the propensity score equation and outcome equation in one step and imple-
mented this approach for propensity score regression and matching. The Bayesian approach of
An (2010) was found to perform better for small samples. Also, An (2010) showed that frequen-
tist PSA using the estimated propensity score tends to overestimate the standard error and has a
larger estimated standard error than the Bayesian PSA approach, which contradicts McCandless
et al. (2009). The difference between the estimator utilized by McCandless et al. (2009) and that
utilized by An (2010) may contribute to the discrepancy in their findings. Specifically, McCan-
dless et al. (2009) examined the variance estimator of frequentist PSA without any adjustment
for uncertainty of the estimated propensity scores. An (2010), in contrast, did not clearly indicate
how his variance estimator was obtained and most likely used a variance estimator that accounted
for uncertainty of group assignment (An, 2010, pg. 15); perhaps building on work by Abadie and
Imbens (2006, 2009). The frequentist PSA approach investigated in this paper is the same as
McCandless et al. (2009).

Of relevance to the McCandless et al. (2009) and An (2010) approaches to Bayesian propen-
sity score analysis, Gelman, Carlin, Stern, and Rubin (2003) have argued that the propensity
score should provide information only regarding study design and not regarding the treatment
effect, as is the case with the Bayesian procedure utilized by McCandless et al. (2009) and An
(2010). Steiner and Cook (in press) also point out that the treatment might affect covariates and
thus propensity score estimation should be based on covariates measured before treatment as-
signment. We agree, and view the McCandless et al. (2009) and An (2010) approaches as con-
ceptually problematic. In particular, a possible consequence of these joint modeling approaches
is that the predictive distribution of propensity scores will be affected by the outcome y, which
can lead to a different propensity score estimate than obtained if y is not used in the analysis.
Thus, to address the problem of joint modeling, this paper outlines a two-step modeling method
using the Bayesian propensity score model in the first step, followed by a Bayesian outcome
model in the second step. To investigate the Bayesian propensity score approach further, our pa-
per employs the optimal full matching algorithm combined with propensity score stratification
and weighting methods for both simulation and case studies. We provide the estimator of the
treatment effect and the variance for our two-step approach. For comparison purposes, we also
examine An’s (2010) “intermediate Bayesian approach” which does address the joint modeling
problem by specifying a Bayesian propensity score model in the first step with a conventional
ordinary least squares outcome model in the second step. However, An (2010) does not provide
detail regarding the variance estimator for this approach and only examines this intermediate
Bayesian approach in the context of single nearest neighbor matching. Our paper provides a de-
tailed discussion of the treatment effect and variance estimators and also examines An’s (2010)
intermediate Bayesian approach under stratification, weighting and optimal full matching.

6. Design and Results of Simulation Studies

In this section we present the design and results of two detailed simulation studies of our
proposed two-step approach to Bayesian propensity score analysis (BPSA) and compare it to
the conventional propensity score analysis (PSA). Also, we fit the simple linear regression and
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Bayesian simple regression without any propensity score adjustment for the purpose of compar-
ison. Bayesian simple regression utilizes the MCMCregress procedure (Martin, Quinn, & Park,
2010) in R (R Development Core Team, 2011) to draw from the posterior distribution of param-
eters of the outcome model using Gibbs sampling (Geman & Geman, 1984).

For this paper, we focus on the estimate of the average treatment effect defined in (2), which
we denote as γ . The outcome model is written as a simple linear regression model—namely,

y = μ + γ T + ε1, (9)

where y is the outcome, μ is the intercept, γ is the average treatment effect, and T is the treatment
indicator. In addition, we assume ε1 ∼ N(0, σ 2

1 In) where In is the n-dimensional identity matrix.
Non-informative uniform priors are used for γ in Bayesian simple regression and an inverse
gamma prior is used for σ 2

1 , with shape parameter and scale parameter both 0.001.
For both PSA and BPSA, two models are specified. The first is a propensity score model,

specified as the following logit model:

Log

(
e(z)

1 − e(z)

)
= α + β ′z, (10)

where α is the intercept, β is the slope vector and z represents a design matrix of chosen covari-
ates. For BPSA, we utilized the R package MCMClogit (Martin et al., 2010) to draw from the
posterior distribution of α and β in the logit model using a random walk Metropolis algorithm.
After estimating propensity scores under PSA or BPSA, we use the outcome model in the second
step to estimate the treatment effect γ via stratification, weighting, and optimal full matching.

In the two simulation studies, the estimated average treatment effect γ̂ and standard error
σ̂ of the frequentist method come from ordinary least squares regression (OLS). Specifically,
for conventional PSA, propensity score stratification is conducted by forming quintiles on the
propensity score, calculating the OLS treatment effect within stratum, and averaging over the

strata to obtain the treatment effect. The standard error was calculated as
√∑5

s=1 σ̂ 2
s /5, where

σ̂ 2
s is the variance of the estimated treatment effect for stratum s, and in which there were five

strata. Although the assumption of independent stratifying units may incur bias, Zanutto, Lu,
and Hornik (2005) have pointed out that this unadjusted variance estimator is a reasonable ap-
proximation to the standard error under the independence assumption and has often been used
by researchers (e.g. Benjamin, 2003; Larsen, 1999; Perkins, Tu, Underhill, Zhou, & Murray,
2000). Propensity score weighting is performed by fitting a weighted regression with 1/ê(z) and
1/(1 − ê(z)) as the weights for the treatment and control group, respectively. Propensity score
matching utilizes the optimal full matching method proposed by Hansen and Klopfer (2006).
A group indicator is produced by assigning the matched participants into the same group and
this serves as a covariate in the linear regression outcome model. The same simulated data set is
used for PSA and BPSA in consideration of fair comparison, where PSA is denoted PSA-1rep
in the tables. To take into account the sampling variability, 1000 replications are also conducted
for traditional PSA, denoted PSA-1000rep. The details of Bayesian approach are provided in the
simulation studies below and a flowchart outlining the steps of the simulation studies is shown
on the left hand side of Figure 4.

6.1. Simulation Study 1

The first simulation study examines the Bayesian propensity score model and OLS outcome
model across different sample sizes, true treatment effects, priors, and PSA methods, on esti-
mates of the treatment effect γ . Because we use a Bayesian approach for the propensity score
model only, we refer to this approach as BPSA-1, which is the same as An’s (2010) “intermediate
Bayesian approach”. Data are generated according to the following procedure:
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1. Independently generate random variables z1, z2 and z3 as three covariates under sample
size n = 100 and n = 250, respectively, such as

z1 ∼ N(1,1)

z2 ∼ Poisson(2)

z3 ∼ Bernoulli(0.5).

These distributions are chosen to imitate different types of covariates in practice such as
continuous variables, count data and dichotomous (e.g. agree/disagree) variables.

2. Obtain the true propensity scores by

e(z) = exp(0.2z1 + 0.3z2 − 0.2z3)

1 + exp(0.2z1 + 0.3z2 − 0.2z3)
, (11)

that is, the propensity score generating model has true α = 0 and true β = (0.2,0.3,

−0.2)′.
3. Calculate the treatment assignment vector T by comparing the propensity score ei(z) to

a random variable Ui generated from the Uniform(0,1) distribution, where i = 1, . . . , n.
Assign Ti = 1 if Ui ≤ ei(z), Ti = 0 otherwise.

4. Generate outcomes y1, . . . , yn using the model:

y = 0.4z1 + 0.3z2 + 0.2z3 + γ T + ε3, (12)

where ε3 ∼ N(0,0.1) and γ is the true treatment effect taking two different values 0.25
and 1.25.

5. Data = {(yi, zi , Ti), i = 1, . . . , n; n = 100 or 250}.
6. Replicate the above steps 1000 times for the PSA model only.

The parameters α and β in the Bayesian propensity score model are standard regression
coefficients. We assume a non-informative uniform prior on the intercept α and independent
normal priors on βk’s (k = 1, 2 and 3 for three covariates, respectively):

βk ∼ N
(
bβ,B−1

β

)
,

with bβ as the prior mean and Bβ as the prior precision. In simulation study 1, bβ is set as 0
to imitate the case of having little information on the mean, the same as what McCandless et
al. (2009) chose in their study. Furthermore, we examine different prior precisions at Bβ = 0,
Bβ = 1, Bβ = 10 and Bβ = 100 to explore the relation between the choice of prior precisions
and the treatment effect. Note that when a prior precision takes value 0, the R program actually
implements a non-informative uniform prior.

The MCMC sampling of the Bayesian propensity score model has 104 iterations with a
thinning interval of 10 after 1000 burn-in. For n observations, there are m = 1000 sets of propen-
sity scores êij (i = 1, . . . , n, j = 1, . . . ,m) calculated from the joint posterior distribution of α

and β . A treatment effect estimate γ̂j is obtained using the j th set of estimated propensity scores
ê1j (z), . . . , ênj (z) by the conventional stratification, weighting, and optimal full matching meth-
ods as in traditional PSA. In fact, this is identical to the conventional approach, except we use
a Bayesian propensity score model in the first step. The final estimate of the treatment effect in
BPSA-1 is

γ̂ =
∑m

j=1 γ̂j

m
. (13)

To estimate the variance of the treatment effect in BPSA-1, we assume independence among
γ̂j s and thus

Var(γ̂ ) =
∑m

j=1 Var(γ̂j )

m2
. (14)
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Because γ̂j s are estimated by the same outcome model with êj sampled from the same posterior
distribution, γ̂j s have the same distribution. Thus, Var(γ̂1) = Var(γ̂2) = . . . = Var(γ̂m). There-
fore, we have the following:

Var(γ̂ ) = Var(γ̂1)

m
. (15)

For notational simplicity, let η denote the vector of propensity score model parameters. Then
Var(γ̂1) can be obtained via the total variance formula

Var(γ̂1) = E
{
Var(γ̂1 | η)

} + Var
{
E(γ̂1 | η)

}
, (16)

where E{Var(γ̂1 | η)} is estimated by the average of σ̂ 2
j s; the conventional variance estimate of γ̂j

without considering the uncertainty of propensity scores produced by the OLS outcome model;
that is,

E
{
Var(γ̂1 | η)

} = m−1
m∑

j=1

σ̂ 2
j , (17)

and Var{E(γ̂1 | η)} is estimated by the sample variance of γ̂j s; that is,

Var
{
E(γ̂1 | η)

} = (m − 1)−1
m∑

j=1

(

γ̂j − m−1
m∑

j=1

γ̂j

)2

. (18)

By inserting (17) and (18) into (16) and taking into account (15), we obtain the following ex-
pression for the variance of the estimated treatment effects within the two-step BPSA approach:

Var(γ̂ ) = m−1 ∑m
j=1 σ̂ 2

j + (m − 1)−1 ∑m
j=1(γ̂j − m−1 ∑m

j=1 γ̂j )
2

m
. (19)

The BPSA variance estimation expression in (19) captures two sources of variation in the
treatment effects, the variation from responses σ̂ 2

j s and the variation from propensity scores∑m
j=1(γ̂j − m−1 ∑m

j=1 γ̂j )
2. This second source of variation is often ignored in conventional

PSA applications. Thus, our approach provides a variance estimation expression for the treatment
effect while maintaining separation between the propensity score model and the outcome model
in the estimation process.

6.2. Results of Simulation Study 1

The estimated average treatment effects γ̂ and standard errors (SE) are shown in Table 1.
With respect to bias in treatment effect estimates, both BPSA-1 (An’s intermediate approach)
and PSA obtain better estimates than simple linear regression without any adjustment. Generally,
when there is insufficient prior information with low precision (Bβ = 0 or 1), BPSA-1 provides
similar γ̂ s to the conventional approach, with BPSA-1 yielding larger standard errors and thus
wider credible intervals. Specifically, when N = 250, the SEs estimated by BPSA-1 are consis-
tently larger than the SEs estimated by conventional PSA (stratification 0.09 vs. 0.07, weighting
0.13 vs. 0.08, and optimal full matching 0.09 or 0.08 vs. 0.07, for Bβ = 0 or 1, respectively).
Similar patterns are found for sample size N = 100. When the precision Bβ increases to 10 or
100, the treatment effect estimates γ̂ s are closer to the true γ compared to conventional PSA,
with smaller SEs. Note that study 1 utilized a prior mean of zero for α and β to imitate the situa-
tion of having little prior information on the propensity score parameters. We find that very high
prior precision on the propensity score parameters does not necessarily provide good estimates.
Instead, a moderate prior precision is safer and desirable.

Table 1 also shows that greater precision in the propensity score equation yields better re-
covery of the frequentist-based treatment effect compared to traditional PSA and compared to no
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TABLE 1.
The γ̂ s & S.E.s for conventional PSA and BPSA with different true γ s, sample sizes and prior precisions in study 1.

First Step Second Step N = 100 N = 250

γ = 0.25 γ = 1.25 γ = 0.25 γ = 1.25

PSA-1rep Stratification 0.30 (0.13) 1.30 (0.13) 0.29 (0.07) 1.29 (0.07)
Weighting 0.31 (0.12) 1.31 (0.12) 0.28 (0.08) 1.28 (0.08)
Matching 0.23 (0.11) 1.23 (0.11) 0.29 (0.07) 1.29 (0.07)

PSA-1000rep Stratification 0.28 (0.10) 1.28 (0.10) 0.28 (0.06) 1.28 (0.06)
Weighting 0.26 (0.12) 1.26 (0.12) 0.25 (0.08) 1.25 (0.08)
Matching 0.26 (0.09) 1.26 (0.09) 0.25 (0.05) 1.25 (0.05)

BPSA Bβ = 0 Stratification 0.32 (0.13) 1.32 (0.13) 0.32 (0.09) 1.32 (0.09)
Weighting 0.31 (0.18) 1.31 (0.18) 0.27 (0.13) 1.27 (0.13)
Matching 0.27 (0.13) 1.27 (0.13) 0.31 (0.09) 1.31 (0.09)

BPSA Bβ = 1 Stratification 0.31 (0.13) 1.31 (0.13) 0.31 (0.09) 1.31 (0.09)
Weighting 0.29 (0.17) 1.29 (0.17) 0.26 (0.13) 1.26 (0.13)
Matching 0.26 (0.13) 1.26 (0.13) 0.30 (0.08) 1.30 (0.08)

BPSA Bβ = 10 Stratification 0.29 (0.12) 1.29 (0.12) 0.29 (0.07) 1.29 (0.07)
Weighting 0.27 (0.15) 1.27 (0.15) 0.27 (0.11) 1.27 (0.11)
Matching 0.24 (0.12) 1.24 (0.12) 0.27 (0.07) 1.27 (0.07)

BPSA Bβ = 100 Stratification 0.29 (0.11) 1.29 (0.11) 0.29 (0.06) 1.29 (0.06)
Weighting 0.28 (0.13) 1.28 (0.13) 0.35 (0.09) 1.35 (0.09)
Matching 0.25 (0.11) 1.25 (0.11) 0.27 (0.06) 1.27 (0.06)

No Adjustment SLR-1rep 0.35 (0.12) 1.35 (0.12) 0.54 (0.09) 1.54 (0.09)
SLR-1000rep 0.48 (0.13) 1.48 (0.13) 0.48 (0.08) 1.48 (0.08)
Bayes SLR 0.35 (0.12) 1.35 (0.12) 0.54 (0.09) 1.54 (0.09)

Note. SLR represents simple linear regression.

adjustment, especially when the sample size is relatively small. For N = 100, BPSA-1 with prior
precisions of 10 and 100 obtain better γ̂ ’s than PSA via stratification, weighting, or matching
methods. But when N increases to 250, there is less advantage to BPSA-1 because the frequen-
tist method is able to achieve better estimates due to more information from the data. PSA with
1000 replications offers more precise estimates than PSA with one replication, as expected. As
a byproduct, we found that the optimal full matching method shows better estimates than strati-
fication and weighting when N = 100, ranging from 0.23 to 0.27 for γ = 0.25 and 1.23 to 1.27
for γ = 1.25. The weighting approach works better when N = 250 and the prior precision is low.
The size of the true treatment effects does not affect the pattern of estimates for both PSA and
BPSA-1.

6.3. Simulation Study 2

To illustrate our two-step Bayesian approach to propensity score analysis, we conduct a
second simulation study with both a Bayesian propensity score model and Bayesian outcome
model, in which uniform priors were compared to normal priors with varying precision. We refer
to this two-step fully Bayesian model as BPSA-2. Also, the effects of different sample sizes,
priors and true γ ’s on the treatment effect are studied.

In study 2, the data generating process is the same as study 1. In addition, a Bayesian out-
come model equation is developed according to (9) using the MCMCregress function in R, which
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replaces the regular OLS outcome model for stratification and optimal full matching in study 1.
However, to the best of our knowledge, Bayesian weighted regression has not yet been developed
in the propensity score literature, thus a Bayesian weighing method with a Bayesian outcome
model is beyond the scope of this paper.

The treatment effect and variance estimates of BPSA-2 are calculated in a different way
from BPSA-1 because here we specify two Bayesian models. Again, let η denote the parameters
of the propensity score model. For each observation, there are m = 1000 estimated propensity
scores based on ηi , and for each estimated propensity score there are J = 1000 treatment effect
estimates γj (η)’s sampled from posterior distribution of γ (i = 1, . . . ,m, j = 1, . . . , J ). We
estimate the treatment effect by the posterior mean of γ ,

E(γ | T ,y, z) = E
{
E(γ | η,T , y, z)

∣∣ T ,y, z
}
, (20)

where E(γ | η,T , y, z) is the posterior mean of γ in the Bayesian outcome model and can be
estimated by J−1 ∑J

j=1 γj (η). Then the treatment effect estimate is,

E(γ | T ,y, z) = E

{

J−1
J∑

j=1

γj (η)

∣∣∣ T ,y, z

}

, (21)

where E{J−1 ∑J
j=1 γj (η) | T ,y, z} can be estimated using the posterior sample mean of η from

the Bayesian propensity score model, that is,

E

{

J−1
J∑

j=1

γj (η)

∣∣∣ T ,y, z

}

= m−1J−1
m∑

i=1

J∑

j=1

γj (ηi). (22)

The posterior variance of γ can be expressed as

Var(γ | T ,y, z) = E
{
Var(γ | η,T , y, z)

∣∣ T ,y, z
}

+ Var
{
E(γ | η,T , y, z)

∣∣ T ,y, z
}
. (23)

In the first part of the right hand of (23), Var(γ | η,T , y, z) can be estimated by the posterior
sample variance σ 2

γ (η) of γ in the Bayesian outcome model,

σ 2
γ (η) = (J − 1)−1

J∑

j=1

[{

γj (η) − J−1
J∑

j=1

γj (η)

}]2

.

Thus,

E
{
Var(γ | η,T , y, z)

∣∣ T ,y, z
} = E

{
σ 2

γ (η)

∣∣ T ,y, z
} = m−1

m∑

i=1

σ 2
γ (ηi). (24)

In the second part of the right hand side of (23), E(γ | η,T , y, z) can be estimated by the
posterior sample mean μγ(η) of γ , where μγ(η) = J−1 ∑J

j=1 γj (η). Thus,

Var
{
E(γ | η,T , y, z)

∣∣ T ,y, z
} = Var{μγ(η) | T ,y, z}

= (m − 1)−1
m∑

i=1

{

μγ(ηi) − m−1
m∑

i=1

μγ(ηi)

}2

. (25)

Therefore, the posterior variance estimate of γ in BPSA-2 is

Var(γ | T ,y, z) = m−1
m∑

i=1

σ 2
γ (ηi) + (m − 1)−1

m∑

i=1

{

μγ(ηi) − m−1
m∑

i=1

μγ(ηi)

}2

. (26)
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We note that (26) incorporates two components of variation. The first component of variation
is the average of the posterior variances across the posterior samples, and the second compo-
nent represents the variance of the posterior means across the posterior samples. Therefore, our
BPSA-2 variance estimator is fully Bayesian, whereas An’s intermediate approach (BPSA-1) is
not fully Bayesian insofar as the outcome equation in An’s approach is frequentist. Thus, we pro-
vide a fully Bayesian variance estimator so that researchers can incorporate priors in the outcome
equation as well as in the propensity score equation.

For the Bayesian propensity score model, independent normal priors are chosen for α and
βk’s (k = 1, 2 and 3 for three covariates, respectively):

α ∼ N
(
bα,B−1

α

)

βk ∼ N
(
bβ,B−1

β

)
,

where bα and bβ are prior means, and Bα and Bβ are prior precisions. In the Bayesian outcome
model, we also assume independent normal priors on the intercept μ and the treatment effect γ :

μ ∼ N
(
bμ,B−1

μ

)

γ ∼ N
(
bγ ,B−1

γ

)
,

with bμ and bγ as the prior mean, and Bμ and Bγ as the prior precisions.
There are two different designs for study 2, labeled I and II, to examine the performance of

BPSA-2 when there is either little prior information or correct prior information on the means,
respectively. In design I, we consider the situation of having little prior information on the means
bα , bβ , bμ, and bγ and set them as 0. Note that Bα = Bβ = 0,1,10,100 in the first step and
Bμ = Bγ = 0,1,10,100 in the second step.

In design II, true parameter values from the generating models are used as the prior means
to imitate the case of having very accurate prior information on the means. For the Bayesian
propensity score model, bα = 0 and bβ = (0.2,0.3,−0.2)′. For the Bayesian outcome model,
since the intercept μ is related to the propensity scores calculated in the first step and, moreover,
since it may be difficult to elicit prior information of the intercept, we let bμ = 0 and Bμ = 0 to
indicate vague information on μ. The prior mean of the treatment effect bγ = 0.25 or 1.25. The
precisions also increase at Bα = Bβ = 0,1,10,100 in the first step and Bγ = 0,1,10,100 in the
second step.

6.4. Results of Simulation Study 2

Results of design I are presented in Tables 2, 3, 4 and 5, while results of design II are
presented in Tables 6, 7, 8 and 9. Examining Table 2 for example, the left hand most column
shows the precision levels for the Bayesian propensity score model. The next column denotes
the precision levels for the Bayesian outcome model. Then, the estimated treatment effects and
standard errors follow.

For design I with little prior information on the mean, we find that given the same prior
precision Bβ for the propensity score model, the higher the prior precision Bγ on the treat-
ment effect, the farther the treatment effect estimate is from true γ . This result indicates that
greater precision around the wrong prior for the treatment effect can lead to seriously dis-
torted results. However, consistent with the results of study 1, when N = 100 and Bγ is low,
the low precisions (Bβ = 0 or 1) on the propensity score model provide similar γ̂ s, but wider
credible interval than traditional PSA, while the high precisions (Bβ = 10 or 100) on the
propensity score equation offer better treatment estimates and more concentrated intervals than
PSA.
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TABLE 2.
The γ̂ s & S.E.s for conventional and Bayesian stratification and matching of design I with true γ = 0.25 in study 2.

First Step Second Step N = 100 N = 250

Stratification Matching Stratification Matching

Bβ = 0 Bγ = 0 0.32 (0.14) 0.27 (0.13) 0.32 (0.09) 0.31 (0.09)
Bγ = 1 0.34 (0.13) 0.28 (0.13) 0.33 (0.09) 0.32 (0.08)
Bγ = 10 0.39 (0.09) 0.31 (0.11) 0.40 (0.08) 0.39 (0.08)
Bγ = 100 0.11 (0.05) 0.38 (0.08) 0.29 (0.04) 0.52 (0.06)

Bβ = 1 Bγ = 0 0.31 (0.14) 0.26 (0.13) 0.31 (0.09) 0.30 (0.08)
Bγ = 1 0.33 (0.13) 0.26 (0.13) 0.32 (0.09) 0.31 (0.08)
Bγ = 10 0.38 (0.09) 0.30 (0.11) 0.39 (0.08) 0.38 (0.08)
Bγ = 100 0.11 (0.05) 0.38 (0.08) 0.29 (0.04) 0.52 (0.06)

Bβ = 10 Bγ = 0 0.29 (0.13) 0.24 (0.12) 0.29 (0.07) 0.27 (0.07)
Bγ = 1 0.31 (0.12) 0.24 (0.12) 0.30 (0.07) 0.28 (0.07)
Bγ = 10 0.37 (0.09) 0.29 (0.10) 0.36 (0.07) 0.34 (0.07)
Bγ = 100 0.11 (0.05) 0.38 (0.07) 0.29 (0.04) 0.51 (0.06)

Bβ = 100 Bγ = 0 0.28 (0.12) 0.25 (0.11) 0.29 (0.07) 0.27 (0.06)
Bγ = 1 0.30 (0.11) 0.25 (0.11) 0.30 (0.06) 0.28 (0.06)
Bγ = 10 0.37 (0.08) 0.29 (0.10) 0.35 (0.06) 0.32 (0.06)
Bγ = 100 0.12 (0.05) 0.38 (0.07) 0.31 (0.04) 0.51 (0.06)

PSA-1rep 0.30 (0.13) 0.23 (0.11) 0.29 (0.07) 0.29 (0.07)
PSA-1000rep 0.28 (0.10) 0.26 (0.09) 0.28 (0.06) 0.25 (0.05)

TABLE 3.
Confidence or credible intervals for conventional and Bayesian stratification and matching of design I with true γ = 0.25
in study 2.

First Step Second Step N = 100 N = 250

Stratification Matching Stratification Matching

Bβ = 0 Bγ = 0 (0.05, 0.59) (0.02, 0.52) (0.14, 0.50) (0.13, 0.49)
Bγ = 1 (0.09, 0.59) (0.03, 0.53) (0.15, 0.51) (0.16, 0.48)
Bγ = 10 (0.21, 0.57) (0.09, 0.53) (0.24, 0.56) (0.23, 0.55)
Bγ = 100 (0.01, 0.21) (0.22, 0.54) (0.21, 0.37) (0.40, 0.64)

Bβ = 1 Bγ = 0 (0.04, 0.58) (0.01, 0.51) (0.13, 0.49) (0.14, 0.46)
Bγ = 1 (0.08, 0.58) (0.01, 0.51) (0.14, 0.50) (0.15, 0.47)
Bγ = 10 (0.20, 0.56) (0.08, 0.52) (0.23, 0.55) (0.22, 0.54)
Bγ = 100 (0.01, 0.21) (0.22, 0.54) (0.21, 0.37) (0.40, 0.64)

Bβ = 10 Bγ = 0 (0.04, 0.54) (0.00, 0.48) (0.15, 0.43) (0.13, 0.41)
Bγ = 1 (0.07, 0.55) (0.00, 0.48) (0.16, 0.44) (0.14, 0.42)
Bγ = 10 (0.19, 0.55) (0.09, 0.49) (0.22, 0.50) (0.20, 0.48)
Bγ = 100 (0.01, 0.21) (0.24, 0.52) (0.21, 0.37) (0.39, 0.63)

Bβ = 100 Bγ = 0 (0.04, 0.52) (0.03, 0.47) (0.15, 0.43) (0.15, 0.39)
Bγ = 1 (0.08, 0.52) (0.03, 0.47) (0.18, 0.42) (0.16, 0.40)
Bγ = 10 (0.21, 0.53) (0.09, 0.49) (0.23, 0.47) (0.20, 0.44)
Bγ = 100 (0.02, 0.22) (0.24, 0.52) (0.23, 0.39) (0.39, 0.63)

PSA-1rep (0.05, 0.55) (0.01, 0.45) (0.15, 0.43) (0.15, 0.43)
PSA-1000rep (0.08, 0.48) (0.08, 0.44) (0.16, 0.40) (0.15, 0.35)
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TABLE 4.
The γ̂ s & S.E.s for conventional and Bayesian stratification and matching of design I with true γ = 1.25 in study 2.

First Step Second Step N = 100 N = 250

Stratification Matching Stratification Matching

Bβ = 0 Bγ = 0 1.32 (0.14) 1.27 (0.13) 1.32 (0.09) 1.31 (0.09)
Bγ = 1 1.27 (0.13) 1.27 (0.13) 1.31 (0.09) 1.32 (0.08)
Bγ = 10 1.00 (0.12) 1.22 (0.11) 1.22 (0.06) 1.35 (0.07)
Bγ = 100 0.08 (0.05) 0.62 (0.11) 0.27 (0.06) 1.15 (0.06)

Bβ = 1 Bγ = 0 1.31 (0.14) 1.26 (0.13) 1.31 (0.09) 1.30 (0.08)
Bγ = 1 1.26 (0.13) 1.25 (0.13) 1.30 (0.08) 1.31 (0.08)
Bγ = 10 1.00 (0.12) 1.21 (0.11) 1.22 (0.06) 1.34 (0.07)
Bγ = 100 0.08 (0.05) 0.62 (0.11) 0.27 (0.06) 1.15 (0.06)

Bβ = 10 Bγ = 0 1.29 (0.13) 1.24 (0.12) 1.29 (0.07) 1.27 (0.07)
Bγ = 1 1.25 (0.12) 1.23 (0.12) 1.28 (0.07) 1.28 (0.07)
Bγ = 10 1.00 (0.12) 1.20 (0.10) 1.22 (0.06) 1.31 (0.06)
Bγ = 100 0.08 (0.05) 0.62 (0.11) 0.30 (0.07) 1.15 (0.06)

Bβ = 100 Bγ = 0 1.28 (0.12) 1.25 (0.11) 1.29 (0.07) 1.27 (0.06)
Bγ = 1 1.25 (0.11) 1.25 (0.11) 1.29 (0.06) 1.27 (0.05)
Bγ = 10 1.06 (0.13) 1.22 (0.10) 1.25 (0.05) 1.30 (0.05)
Bγ = 100 0.08 (0.05) 0.62 (0.11) 0.34 (0.09) 1.16 (0.06)

PSA-1rep 1.30 (0.13) 1.23 (0.11) 1.29 (0.07) 1.29 (0.07)
PSA-1000rep 1.28 (0.10) 1.26 (0.09) 1.28 (0.06) 1.25 (0.05)

TABLE 5.
Confidence or credible intervals for conventional and Bayesian stratification and matching of design I with true γ = 1.25
in study 2.

First Step Second Step N = 100 N = 250

Stratification Matching Stratification Matching

Bβ = 0 Bγ = 0 (1.05, 1.59) (1.02, 1.52) (1.14, 1.50) (1.13, 1.49)
Bγ = 1 (1.02, 1.52) (1.02, 1.52) (1.13, 1.49) (1.16, 1.48)
Bγ = 10 (0.76, 1.24) (1.00, 1.44) (1.10, 1.34) (1.21, 1.49)
Bγ = 100 (−0.02, 0.18) (0.40, 0.84) (0.15, 0.39) (1.03, 1.27)

Bβ = 1 Bγ = 0 (1.03, 1.57) (1.01, 1.51) (1.13, 1.49) (1.14, 1.46)
Bγ = 1 (1.01, 1.51) (1.00, 1.50) (1.14, 1.46) (1.15, 1.47)
Bγ = 10 (0.76, 1.24) (0.99, 1.43) (1.10, 1.34) (1.20, 1.48)
Bγ = 100 (−0.02, 0.18) (0.40, 0.84) (0.15, 0.39) (1.03, 1.27)

Bβ = 10 Bγ = 0 (1.04, 1.54) (1.00, 1.48) (1.15, 1.43) (1.13, 1.41)
Bγ = 1 (1.01, 1.49) (0.99, 1.47) (1.14, 1.42) (1.13, 1.42)
Bγ = 10 (0.76, 1.24) (1.00, 1.40) (1.10, 1.34) (1.19, 1.43)
Bγ = 100 (−0.02, 0.18) (0.40, 0.84) (0.16, 0.44) (1.03, 1.27)

Bβ = 100 Bγ = 0 (1.04, 1.52) (1.03, 1.47) (1.15, 1.43) (1.15, 1.39)
Bγ = 1 (1.03, 1.47) (1.03, 1.47) (1.17, 1.41) (1.17, 1.37)
Bγ = 10 (0.81, 1.31) (1.02, 1.42) (1.15, 1.35) (1.20, 1.40)
Bγ = 100 (−0.02, 0.18) (0.40, 0.84) (0.16, 0.52) (1.04, 1.28)

PSA-1rep (1.05, 1.55) (1.01, 1.45) (1.15, 1.43) (1.15, 1.43)
PSA-1000rep (1.08, 1.48) (1.08, 1.44) (1.16, 1.40) (1.15, 1.35)
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TABLE 6.
The γ̂ s & S.E.s for conventional and Bayesian stratification and matching of design II with true γ = 0.25 in study 2.

First Step Second Step N = 100 N = 250

Stratification Matching Stratification Matching

Bβ = 0 Bγ = 0 0.32 (0.14) 0.27 (0.13) 0.32 (0.09) 0.31 (0.09)
Bγ = 1 0.31 (0.13) 0.27 (0.13) 0.32 (0.09) 0.31 (0.09)
Bγ = 10 0.29 (0.10) 0.27 (0.12) 0.30 (0.08) 0.31 (0.08)
Bγ = 100 0.26 (0.04) 0.26 (0.08) 0.26 (0.04) 0.29 (0.07)

Bβ = 1 Bγ = 0 0.30 (0.14) 0.25 (0.13) 0.31 (0.09) 0.30 (0.08)
Bγ = 1 0.30 (0.13) 0.25 (0.13) 0.31 (0.09) 0.30 (0.08)
Bγ = 10 0.28 (0.10) 0.25 (0.12) 0.30 (0.07) 0.30 (0.08)
Bγ = 100 0.26 (0.04) 0.25 (0.08) 0.26 (0.04) 0.28 (0.06)

Bβ = 10 Bγ = 0 0.28 (0.13) 0.23 (0.11) 0.28 (0.07) 0.27 (0.07)
Bγ = 1 0.27 (0.12) 0.23 (0.11) 0.28 (0.07) 0.27 (0.07)
Bγ = 10 0.26 (0.09) 0.23 (0.11) 0.27 (0.06) 0.27 (0.07)
Bγ = 100 0.25 (0.04) 0.24 (0.07) 0.25 (0.04) 0.26 (0.06)

Bβ = 100 Bγ = 0 0.24 (0.09) 0.23 (0.09) 0.26 (0.06) 0.24 (0.05)
Bγ = 1 0.24 (0.09) 0.23 (0.09) 0.26 (0.06) 0.24 (0.05)
Bγ = 10 0.25 (0.08) 0.23 (0.08) 0.25 (0.06) 0.24 (0.05)
Bγ = 100 0.25 (0.04) 0.24 (0.06) 0.24 (0.04) 0.24 (0.05)

PSA-1rep 0.30 (0.13) 0.23 (0.11) 0.29 (0.07) 0.29 (0.07)
PSA-1000rep 0.28 (0.10) 0.26 (0.09) 0.28 (0.06) 0.25 (0.05)

TABLE 7.
Confidence interval or credible interval for conventional and Bayesian stratification and matching of design II with true
γ = 0.25 in study 2.

First Step Second Step N = 100 N = 250

Stratification Matching Stratification Matching

Bβ = 0 Bγ = 0 (0.05, 0.59) (0.02, 0.52) (0.14, 0.50) (0.13, 0.49)
Bγ = 1 (0.06, 0.56) (0.02, 0.52) (0.14, 0.50) (0.13, 0.49)
Bγ = 10 (0.09, 0.49) (0.03, 0.51) (0.14, 0.46) (0.15, 0.47)
Bγ = 100 (0.18, 0.34) (0.10, 0.42) (0.18, 0.34) (0.15, 0.43)

Bβ = 1 Bγ = 0 (0.03, 0.57) (0.00, 0.50) (0.13, 0.49) (0.14, 0.46)
Bγ = 1 (0.05, 0.55) (0.00, 0.50) (0.13, 0.49) (0.14, 0.46)
Bγ = 10 (0.08, 0.48) (0.01, 0.49) (0.16, 0.44) (0.14, 0.46)
Bγ = 100 (0.18, 0.34) (0.09, 0.41) (0.18, 0.34) (0.16, 0.40)

Bβ = 10 Bγ = 0 (0.03, 0.53) (0.01, 0.45) (0.14, 0.42) (0.13, 0.41)
Bγ = 1 (0.03, 0.51) (0.01, 0.45) (0.14, 0.42) (0.13, 0.41)
Bγ = 10 (0.08, 0.44) (0.01, 0.45) (0.15, 0.39) (0.14, 0.41)
Bγ = 100 (0.17, 0.33) (0.10, 0.38) (0.17, 0.33) (0.14, 0.38)

Bβ = 100 Bγ = 0 (0.06, 0.42) (0.05, 0.41) (0.14, 0.38) (0.14, 0.34)
Bγ = 1 (0.06, 0.42) (0.05, 0.41) (0.14, 0.38) (0.14, 0.34)
Bγ = 10 (0.09, 0.41) (0.07, 0.39) (0.13, 0.37) (0.14, 0.34)
Bγ = 100 (0.17, 0.33) (0.12, 0.36) (0.16, 0.32) (0.14, 0.34)

PSA-1rep (0.05, 0.55) (0.01, 0.45) (0.15, 0.43) (0.15, 0.43)
PSA-1000rep (0.08, 0.48) (0.08, 0.44) (0.16, 0.40) (0.15, 0.35)
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TABLE 8.
The γ̂ s & S.E.s for conventional and Bayesian stratification and matching of design II with true γ = 1.25 in study 2.

First Step Second Step N = 100 N = 250

Stratification Matching Stratification Matching

Bβ = 0 Bγ = 0 1.32 (0.14) 1.27 (0.13) 1.32 (0.09) 1.31 (0.09)
Bγ = 1 1.31 (0.13) 1.27 (0.13) 1.32 (0.09) 1.31 (0.09)
Bγ = 10 1.29 (0.10) 1.27 (0.12) 1.30 (0.08) 1.31 (0.08)
Bγ = 100 1.26 (0.04) 1.26 (0.08) 1.26 (0.04) 1.29 (0.07)

Bβ = 1 Bγ = 0 1.30 (0.14) 1.25 (0.13) 1.31 (0.09) 1.30 (0.08)
Bγ = 1 1.30 (0.13) 1.25 (0.13) 1.31 (0.09) 1.30 (0.08)
Bγ = 10 1.28 (0.10) 1.25 (0.12) 1.30 (0.07) 1.30 (0.08)
Bγ = 100 1.26 (0.04) 1.25 (0.08) 1.26 (0.04) 1.28 (0.06)

Bβ = 10 Bγ = 0 1.28 (0.13) 1.23 (0.11) 1.28 (0.07) 1.27 (0.07)
Bγ = 1 1.27 (0.12) 1.23 (0.11) 1.28 (0.07) 1.27 (0.07)
Bγ = 10 1.26 (0.09) 1.23 (0.11) 1.27 (0.06) 1.27 (0.07)
Bγ = 100 1.25 (0.04) 1.24 (0.07) 1.25 (0.04) 1.26 (0.06)

Bβ = 100 Bγ = 0 1.24 (0.09) 1.23 (0.09) 1.26 (0.06) 1.24 (0.05)
Bγ = 1 1.24 (0.09) 1.23 (0.09) 1.26 (0.06) 1.24 (0.05)
Bγ = 10 1.25 (0.08) 1.23 (0.08) 1.25 (0.06) 1.24 (0.05)
Bγ = 100 1.25 (0.04) 1.24 (0.06) 1.24 (0.04) 1.24 (0.05)

PSA-1rep 1.30 (0.13) 1.23 (0.11) 1.29 (0.07) 1.29 (0.07)
PSA-1000rep 1.28 (0.10) 1.26 (0.09) 1.28 (0.06) 1.25 (0.05)

TABLE 9.
Confidence interval or credible interval for conventional and Bayesian stratification and matching of design II with true
γ = 1.25 in study 2.

First Step Second Step N = 100 N = 250

Stratification Matching Stratification Matching

Bβ = 0 Bγ = 0 (1.05, 1.59) (1.02, 1.52) (1.14, 1.50) (1.13, 1.49)
Bγ = 1 (1.06, 1.56) (1.02, 1.52) (1.14, 1.50) (1.13, 1.49)
Bγ = 10 (1.09, 1.49) (1.03, 1.51) (1.14, 1.46) (1.15, 1.47)
Bγ = 100 (1.18, 1.34) (1.10, 1.42) (1.18, 1.34) (1.15, 1.43)

Bβ = 1 Bγ = 0 (1.03, 1.57) (1.00, 1.50) (1.13, 1.49) (1.14, 1.46)
Bγ = 1 (1.05, 1.55) (1.00, 1.50) (1.13, 1.49) (1.14, 1.46)
Bγ = 10 (1.08, 1.48) (1.01, 1.49) (1.16, 1.44) (1.14, 1.46)
Bγ = 100 (1.18, 1.34) (1.09, 1.41) (1.18, 1.34) (1.16, 1.40)

Bβ = 10 Bγ = 0 (1.03, 1.53) (1.01, 1.45) (1.14, 1.42) (1.13, 1.41)
Bγ = 1 (1.03, 1.51) (1.01, 1.45) (1.14, 1.42) (1.13, 1.41)
Bγ = 10 (1.08, 1.44) (1.01, 1.45) (1.15, 1.39) (1.14, 1.41)
Bγ = 100 (1.17, 1.33) (1.10, 1.38) (1.17, 1.33) (1.14, 1.38)

Bβ = 100 Bγ = 0 (1.06, 1.42) (1.05, 1.41) (1.14, 1.38) (1.14, 1.34)
Bγ = 1 (1.06, 1.42) (1.05, 1.41) (1.14, 1.38) (1.14, 1.34)
Bγ = 10 (1.09, 1.41) (1.07, 1.39) (1.13, 1.37) (1.14, 1.34)
Bγ = 100 (1.17, 1.33) (1.12, 1.36) (1.16, 1.32) (1.14, 1.34)

PSA-1rep (1.05, 1.55) (1.01, 1.45) (1.15, 1.43) (1.15, 1.43)
PSA-1000rep (1.08, 1.48) (1.08, 1.44) (1.16, 1.40) (1.15, 1.35)
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We find that BPSA-2 still performs better for N = 100. When N increases to 250, the treat-
ment effect estimates of BPSA-2 and PSA approach each other, as expected. Also, the optimal
full matching method performs slightly better than propensity score stratification. Different true
γ s yield similar patterns of treatment effect estimates.

For design II with true parameters as prior means, conditional on the same prior precision
Bβ for the propensity score model, greater prior precision on Bγ yields more accurate treatment
effect estimates. In fact, according to Table 6 and Table 8, when N = 100 and Bγ = 100, the
estimates are very close to the true γ , ranging from 0.24 to 0.26 for γ = 0.25 and 1.24 to 1.26
for γ = 1.25. These results suggest that greater precision around the correct treatment effect
parameter yields quite ideal results.

Given the same prior precision Bγ on the outcome model, there is a slight improvement seen
with greater precision in the propensity score equation, except for the matching method when
N = 100. The violation may be due to the non-informative prior on the intercept of outcome
model, but note that although estimates via matching do not hold the pattern for N = 100, the
results are still good and stable, ranging from 0.23 to 0.27 for γ = 0.25 and 1.23 to 1.27 for
γ = 1.25.

In contrast to design I, both stratification and optimal full matching work well when preci-
sions are relatively high. When both Bβ and Bγ are 100, stratification performs slightly better
than optimal full matching.

In addition to the tabled results, we provide selected posterior density plots of BPSA-1 and
BPSA-2 for a randomly selected subject displayed in Figures 1–3.4 Figure 1 shows the posterior
distribution of intercept α and slopes β1, β2 and β3 of three covariates in the Bayesian propensity
score equation, which suggests again that the Bayesian propensity score model naturally takes
into account the uncertainty of propensity score estimates. The left column of Figure 1 represents
the Bayesian propensity score model with non-informative uniform priors (Bβ = 0), whereas the
right column represents the Bayesian propensity score model with informative independent nor-
mal priors (that is, true prior means with prior precisions Bβ = 10). The posterior distribution of
parameters with informative priors is not only more concentrated, as expected, but also smoother
than the posterior distribution with non-informative priors.

On the basis of the Bayesian propensity score estimates in Figure 1, the OLS outcome model
and Bayesian outcome model estimates are shown in Figure 2 and Figure 3, respectively. Figure 2
illustrates the predictive distribution of treatment effect estimates γ̂ by OLS regression based on
the Bayesian propensity score estimates (BPSA-1). The left column of Figure 2 refers to stratifi-
cation, weighting and optimal full matching estimates based on propensity score estimates with
non-informative priors, while the right column indicates the distribution of γ̂ corresponding to
Bayesian propensity score estimates with informative priors. Weighting and optimal full match-
ing approaches show more accurate estimates than the stratification method (True γ = 1.25).
Figure 3 shows the distribution of the posterior means of γ̂ estimated by the Bayesian outcome
model (BPSA-2). The left and right columns represent stratification and optimal full matching
estimates, respectively, while different rows imply different kinds of prior. The first row of Fig-
ure 3 indicates that the propensity score model and outcome model have non-informative priors;
the second row refers to the non-informative propensity score model together with an informative
outcome model, the third row is the opposite of the second row and has an informative propen-
sity score model only, and the fourth row has informative priors for both models. According to
Figure 3, informative priors on the outcome model yield more accurate treatment effect estimates
(second and fourth row in Figure 3) regardless of whether informative or non-informative pri-
ors are used in the propensity score model. This suggests that accurate prior information on the
treatment effect has a greater impact on the estimate than prior information on the propensity

4All other density plots and convergence plots are available upon request.
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score model. Compared to stratification, the optimal full matching approach shows a smoother
and wider predictive distribution.

To summarize, the results from design I and II show that when applying BPSA, it is desirable
to use lower precision when uncertain about the mean in order to obtain estimates similar to fre-
quentist results without adjustment for uncertainty, but with more accurate intervals; or employ
higher prior precision when having greater certainty in order to obtain more precise estimates of
treatment effects. We also find that the BPSA approach is preferable for small sample sizes, con-
sistent with An’s (2010) findings. Among the different methods of propensity score adjustment
examined in this paper, the optimal full matching approach often performs better than the strat-
ification method. However, with precise prior information and high precision, the stratification
method can also obtain good estimates.

7. A Simulation Study of Standard Error Estimates

To further explore the performance of BPSA-1 and BPSA-2 on the estimated standard error
of γ̂ , a small simulation study is conducted, replicating frequentist PSA, BPSA-1 and BPSA-2
with several selected priors. Again, note that when the prior precision of the propensity score
equation Bβ or the outcome equation Bγ is 0, a non-informative prior for the corresponding
equation is used. Whereas when the prior precisions Bβ or Bγ are set to 10, the true prior mean is
utilized with prior precision 10 for the parameters of the propensity score equation or the outcome
equation. The results, averaged over 200 replications, are shown in Table 10. The sample size N

is 250 for all approaches shown in Table 10, except N = 100 for BPSA-2 optimal full matching
(the last four rows).

According to Table 10, the mean of the standard errors for the treatment effect is consis-
tently smaller than the standard deviation of the estimates under stratification, weighting and
optimal full matching (0.15 vs. 0.16). The coverage rates for the 95 % confidence intervals are
slightly smaller than the nominal level for PSA stratification and weighting (94.5 % and 93.5 %,
respectively). Under optimal full matching, the coverage rate is slightly over-estimated (95.5 %).

With informative priors on the propensity score equation, the mean of the estimated standard
errors for BPSA-1 achieves the same value as the standard deviation of the estimates under all
three propensity score approaches. With non-informative priors, BPSA-1 stratification provides
accurate standard errors; however weighting and optimal full matching yield a higher mean stan-
dard error compared to the standard deviation of the estimates. The coverage rates for BPSA-1
credible intervals are similar to the frequentist PSA confidence intervals.

For BPSA-2 under stratification and a non-informative prior on the treatment effect, the
mean of the estimated standard errors is very precise and the coverage rates are very close to the
nominal level. With informative priors on the treatment effect, the mean of the estimated standard
errors is higher than the true variability. However, for BPSA-2 under optimal full matching, the
mean of the estimated standard errors is much higher than the true variability (0.27 vs. 0.22, 0.21
vs. 0.14) and coverage rates are quite high. This finding may be due to the smaller sample size for
BPSA-2 matching. Also, the matching approach seems to yield higher coverage rates under both
frequentist and Bayesian methods. In regard to bias, frequentist PSA estimates are as precise or
slightly better than BPSA-1 and BPSA-2 estimates. BPSA-2 estimates are closer to true γ when
having informative priors on the treatment effect.

In summary, the frequentist PSA variance estimator without taking into account uncertainty
in estimated propensity scores tends to underestimate the variance of the treatment effect. On av-
erage, BPSA-1 (An’s intermediate approach) performs well in terms of the closeness between the
estimated and true variability. BPSA-2 stratification provides quite good standard error estimates,
but BPSA-2 under optimal full matching over-estimates the variance. Generally, the Bayesian
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TABLE 10.
Simulation results for 200 replications.

Estimate S.E. Coverage

Bias SD Mean SD

Stratification
PSA −0.03 0.16 0.15 0.01 94.5 %
BPSA-1

Bβ = 0 −0.05 0.16 0.16 0.01 94.5 %
Bβ = 10 −0.05 0.16 0.16 0.01 95.0 %

BPSA-2
Bβ = Bγ = 0 −0.06 0.16 0.16 0.01 94.5 %
Bβ = 0, Bγ = 10 −0.03 0.07 0.11 0.003 99.0 %
Bβ = 10, Bγ = 0 −0.06 0.16 0.16 0.01 95.0 %
Bβ = Bγ = 10 −0.03 0.07 0.11 0.003 99.0 %

Weighting
PSA −0.002 0.16 0.15 0.01 93.5 %
BPSA-1

Bβ = 0 −0.01 0.16 0.17 0.02 96.5 %
Bβ = 10 −0.04 0.16 0.16 0.01 93.5 %

Optimal matching
PSA −0.01 0.16 0.15 0.01 95.5 %
BPSA-1

Bβ = 0 −0.03 0.16 0.17 0.01 95.5 %
Bβ = 10 −0.03 0.16 0.16 0.01 95.5 %

BPSA-2
Bβ = Bγ = 0 −0.06 0.22 0.27 0.02 97.0 %
Bβ = 0, Bγ = 10 −0.04 0.14 0.21 0.01 100 %
Bβ = 10, Bγ = 0 −0.07 0.22 0.27 0.02 97.5 %
Bβ = Bγ = 10 −0.04 0.14 0.21 0.01 100 %

Note. Weighting approach in BPSA-2 is not discussed here due to the absence of Bayesian weighted regres-
sion in the propensity score literature.

approach has larger coverage rates than the frequentist approach, which may be because the sim-
ulation study follows the frequentist framework, thus favoring a frequentist outcome (Yuan &
MacKinnon, 2009).

Our simulation results regarding frequentist PSA variance estimation are consistent with
McCandless et al. (2009) but disagree with Abadie and Imbens (2009) and An (2010). Assum-
ing group assignment is random, it has been shown that the variance of the estimators using
the estimated propensity score is not more than the variance of the estimators given the known
true propensity score (Rubin & Thomas, 1992a, 1992b; Abadie & Imbens, 2006). Thus, when
treating the estimated propensity score as if it were true, the variance estimator will overestimate
the true variance. We believe, therefore, that the discrepancy between our results and those of
Abadie and Imbens (2009) and An (2010) could be due to the fact that the asymptotic variance
estimator for matching developed by Abadie and Imbens (2006, 2009) treats group assignment
as random. In contrast to Abadie and Imbens (2009) and An (2010), the frequentist PSA variance
estimator employed by McCandless et al. (2009) and the one developed in this paper treats group
assignment as fixed, thereby ignoring the uncertainty of estimated propensity scores, and leading
to variance underestimation according to the total variance formula.
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From a Bayesian perspective, our two-step Bayesian propensity score approach naturally
takes into account the uncertainty of the estimated propensity scores and yields larger variance
estimates. Note that our Bayesian results differ from An’s (2010) Bayesian results, which may
be due to the discrepancy in the methods utilized in the two papers. First, An (2010) focuses
on propensity score regression and single nearest neighbor matching methods, whereas our pa-
per studies different approaches, i.e. stratification, weighting and optimal full matching. In ad-
dition, An (2010) utilizes an empirical Bayes approach to estimation, whereas we, along with
McCandless et al. (2009), implement a more traditional Bayesian approach and fix prior dis-
tributions before any data are observed. Finally, the difference between our two-step Bayesian
approach and the joint modeling Bayesian approach may also contribute to the discrepancy in
results.

8. A Case Study

The real data used for illustrating our method derive from the Early Childhood Longitudi-
nal Study Kindergarten Cohort of 1998 (ECLS-K) (NCES, 2001). The ECLS-K is a nationally
representative longitudinal sample providing comprehensive information from children, parents,
teachers and schools. The sampled children comes from both public and private schools and
attends both full-day and part-day kindergarten programs, having diverse socio-economic and
racial/ethnic backgrounds.

In this case study, we examine the treatment effect of full versus part-day kindergarten at-
tendance on IRT-based reading scores for children at the end of 1998 fall kindergarten. A sample
of 600 children was randomly selected proportional to the number of children in full- or part-
day kindergarten in the population. This resulted in 320 children in full-day kindergarten and
280 children in part-day kindergarten. Thirteen covariates were chosen for the propensity score
equation. These included gender, race, child’s learning style, self-control, social interactions,
sadness/loneliness, impulsiveness/overreactiveness, mother’s employment status, whether first
time kindergartner in 1998, mother’s employment between birth and kindergarten, non-parental
care arrangements, social economic status and number of grandparents who live close by. We ac-
knowledge that covariate selection is very important for the use of propensity score method (see
e.g. Steiner, Cook, Shadish, & Clark, 2010). However, it is not the focus of this paper and for
the purpose of illustration, we assume that the covariates here remain the same before and after
treatment assignment and correlate with both the real selection process and the potential out-
comes. All analyses utilized the various R software programs described earlier (R Development
Core Team, 2011). Missing data were handled via the R program mice (multivariate imputation
by chained equations) (van Buuren & Groothuis-Oudshoorn, 2011). Non-informative uniform
priors are used due to lack of information. The MCMC sampling has 400,000 iterations with
burn-in 5000 and thin interval 400, which significantly reduces autocorrelation to an acceptable
range.

The estimated treatment effects and confidence/credible intervals for simple regression, tra-
ditional PSA, BPSA-1, and BPSA-2 are shown in Table 11. Compared to the nonsignificant
results estimated by simple regression, both PSA and BPSA are able to detect a significant treat-
ment effect and greatly reduce the estimation bias. The Bayesian approach with little prior in-
formation achieves similar estimated treatment effects to the conventional frequentist approach,
but offers a better variance estimate, taking into account the uncertainty of propensity scores
and therefore having wider credible intervals. On average, the Bayesian stratification method has
6.2 % wider interval than conventional approach, the Bayesian weighting approach achieves an
8.9 % wider interval, and the Bayesian optimal full matching method obtains as much as 14 %
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TABLE 11.
Estimated treatment effects (γ̂ ) & standard errors (S.E.) by PSA, BPSA-1 and BPSA-2 for the ECLS-K data.

Method γ̂ (S.E.) Confidence/Credible Interval

Simple linear regression 1.42 (0.78) (−0.12, 2.95)
Bayesian linear regression 1.43 (0.80) (−0.14, 2.99)

PSA
Stratification 2.10 (0.83) (0.48, 3.72)
Weighting 2.14 (0.80) (0.57, 3.71)
Optimal matching 2.11 (0.83) (0.48, 3.74)

BPSA-1
Stratification 2.08 (0.87) (0.37, 3.79)
Weighting 2.23 (0.87) (0.52, 3.94)
Optimal matching 2.08 (0.95) (0.22, 3.94)

BPSA-2
Stratification 2.07 (0.88) (0.34, 3.80)
Optimal matching 2.09 (0.95) (0.23, 3.94)

FIGURE 4.
Flowchart outlining steps of simulation and case studies.

wider interval. This result agrees with McCandless et al. (2009) and is consistent with our simu-
lation results and Bayesian theory. A flow chart outlining the steps of the case study can be found
on the right hand side of Figure 4.



PSYCHOMETRIKA

9. Summary

This paper sought to provide a two-step Bayesian approach to propensity score adjustment
that accounts for prior information in both the propensity score model and the outcome model.
This approach, here referred to as BPSA-2, was developed for applications to propensity score
stratification and optimal full matching. Treatment effect and variance estimators for BPSA-2
under these contexts were also provided. In addition, we extended An’s (2010) “intermediate
Bayesian approach” (here referred to as BPSA-1) to stratification, weighting, and optimal full
matching, as well as provides the treatment effect and variance estimators. Finally, for purposes
of completeness we compared our approaches to the conventional frequentist approach which
does not account for uncertainty in the propensity scores.

To summarize, simulation study 1 and study 2 examined the general performance of two-
step BPSA-1 and BPSA-2 approaches for one simulated data set and explored the influence
of various priors on the estimate of a treatment effect. A further simulation study focused on
the variance estimation of BPSA-1 and BPSA-2, showing the coverage rates and comparing
mean standard errors with approximately true variation. Study 1 revealed that greater precision
in the propensity score equation yielded better recovery of the frequentist-based treatment effect
compared to traditional PSA and compared to no adjustment. BPSA-1 also revealed a very small
advantage to the Bayesian approach for N = 100 versus N = 250. Design I of the BPSA-2
study revealed that greater precision around the wrong treatment effect can lead to seriously
distorted results. Design II of the BPSA-2 study revealed that greater precision around the correct
treatment effect yields quite good results, with slight improvement seen with greater precision in
the propensity score equation. Our results also indicated that the optimal full matching method
obtained somewhat more stable and precise estimates compared to stratification and matching.

An additional simulation study revealed that traditional PSA variance estimates tend to un-
derestimate the true variation of the treatment effect estimators, while BPSA-1 provided accurate
or slightly higher variance estimates. For BPSA-2, high prior precision on the treatment effect
lead to overly high coverage rates but smaller variation of estimators compared to other ap-
proaches. With non-informative priors on the treatment effect, BPSA-2 stratification performed
as good as BPSA-1, but BPSA-2 matching provided over-estimated variance estimate and overly
high coverage rate that might be due to the smaller sample size. However, this issue deserves
further investigation.

We note once again a discrepancy in the findings regarding variance estimation under fre-
quentist PSA. To summarize, Abadie and Imbens (2009) and An (2010) found that the frequen-
tist PSA treatment effect estimator exhibited an overestimation in the variance whereas Lechner
(2002), McCandless et al. (2009), and our paper found that the variance estimates of the PSA
approach, without taking into account uncertainty of estimated propensity scores, were under-
estimated. We attribute this discrepancy to the different kinds of PSA variance estimator these
papers employ. Abadie and Imbens (2009) and An (2010) consider the PSA variance estimator
that has taken into account uncertainty of group assignment, while the latter including this paper
utilize the variance estimator that fixes the group assignment. Further research on this issue is
warranted.

Finally, the case study revealed that the credible intervals are wider than the confidence
intervals when priors are non-informative. This result is consistent with McCandless et al. (2009)
and with Bayesian theory.

10. Concluding Remarks

Our paper was situated within the Neyman–Rubin potential outcomes framework, and it is
important that we consider the value added of a Bayesian approach to propensity score analysis
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within that framework. In particular, in this era of “evidenced-based” research in the social and
behavioral sciences and the importance placed on randomized experiments or tightly controlled
quasi-experiments, the clear goal is to obtain reliable estimates of treatment effects. Our view
is that reliable estimates of treatment effects must account for various types of uncertainty. In
the case of a randomized experiment, there is no uncertainty in the mechanism that assigns units
to treatment conditions, though there may be considerable uncertainty in the estimate of the
treatment effect. This latter uncertainty could be addressed simply by performing a Bayesian
regression to test the treatment effect, specifying a lesser or greater degree of precision on the
prior distribution of the treatment effect.

In the context of observational studies, however, there are additional sources of uncertainty
that need to be addressed. First, there is uncertainty in the choice of covariates to be used in the
propensity score equation. The problem of covariate choice has been discussed in Steiner, Cook,
and Shadish (2011) and Steiner et al. (2010), who demonstrate important strategies for covariate
selection that directly concern the assumption of strong ignorability of treatment assignment.
Nevertheless, this source of uncertainty is captured in the disturbance term of the propensity score
equation. The second source of uncertainty concerns capturing the correct functional form of the
propensity score. Rosenbaum and Rubin (1984, 1985) outline procedures based on iteratively
checking covariate balance when including higher-order polynomials and interaction terms in
the logistic model for the propensity score.

With respect to our paper, two additional sources of uncertainty can be considered. The third
source of uncertainty centers on the degree of prior knowledge we have concerning the propensity
score model parameters. This source of uncertainty can be addressed through specification of the
prior distributions on the parameters of the propensity score model. Finally, the fourth source of
uncertainty centers on the degree of prior knowledge we have on the parameters of the outcome
model. This fourth source of uncertainty can be addressed through the specification of the prior
distribution on the treatment effect.

Bayesian theory provides the framework by which we can incorporate prior information
to represent our degree of uncertainty in the propensity score model and the outcome model.
However, careful specification of the prior distribution of all of the model parameters requires
deeper understanding of the elicitation problem (see Abbas, Budescu, Yu, & Haggerty, 2008; Ab-
bas, Budescu, & Gu, 2010; O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson, & et al.,
2006). The general idea is that through a careful review of prior research on a problem, and/or
the careful elicitation of prior knowledge from content area experts and/or key stakeholders,
relatively precise values for hyperparameters can be obtained and incorporated into a Bayesian
specification. Alternative elicitations can be directly compared via Bayesian model selection
measures such as the deviance information criterion (Spiegelhalter et al., 2002). It is through (a)
the careful and rigorous elicitation of prior knowledge, (b) the incorporation of that knowledge
into the propensity score model and outcome model, and (c) a rigorous approach to the selec-
tion among competing propensity score models, that a pragmatic and evolutionary development
of knowledge can be realized—and this is precisely the advantage that Bayesian statistics, and
Bayesian propensity score analysis in particular, has over its frequentist counterparts. Now that
the theoretical and computational foundations have been established, the benefits of Bayesian
propensity score analysis in the context of observational studies will be realized in terms of how
it provides insights into important substantive problems.
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