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This chapter provides a general overview of Bayesian statistical methods. Topics include the notion of
probability from a Bayesian perspective, Bayesian inference and hypothesis testing, and Bayesian
computation. Three examples are provided to demonstrate the utility of Bayesian methods: simple
linear regression, multilevel regression, and confirmatory factor analysis. Throughout the chapter,
references are made to the epistemological differences between Bayesian theory and classical
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Bayesian statistics has long been overlooked in the
quantitative methods training of social scientists.
Typically, the only introduction that a student might
have to Bayesian ideas is a brief overview of Bayes’
Theorem while studying probability in an intro-
ductory statistics class. There are two reasons for
this. First, until recently, it was not feasible to con-
duct statistical modeling from a Bayesian perspective
owing to its complexity and lack of available soft-
ware. Second, Bayesian statistics challenges many
of the assumptions underlying frequentist (classi-
cal) statistics and is therefore, controversial. We will
use the term frequentist to describe the paradigm
of statistics commonly used today, and this repre-
sents the counterpart to the Bayesian paradigm of
statistics. Historically, however, Bayesian statistics
predates frequentist statistics by about 150 years.
Recently, however, there has been extraordi-
nary growth in the development and application
of Bayesian statistical methods, mostly because of
developments of powerful statistical software tools
that render the specification and estimation of com-
plex models feasible from a Bayesian perspective. As

a result, there have been scores of books written over
the last 10 years, and at a variety of technical levels,
that lead students and researchers through Bayesian
Theory and computation. For a technical treatment
of Bayesian statistics, see for example, Gelman, Car-
lin, Stern, and Rubin (2003). For a less technical
treatment, see for example, Hoff (2009).

The scope of this chapter is, by necessity, limited
because the field of Bayesian inference is remarkably
wide ranging, and space limitations preclude a full
development of Bayesian theory. Thus, the goal of
the chapter will be to lay out the fundamental issues
that separate Bayesian statistics from its frequentist
counterpart and to provide a taste of its applications
through specific examples.

The organization of this chapter will cover
(1) Bayesian probability; (2) Bayesian inference
and hypothesis testing; (3) Bayesian computation;
and (4) simple empirical examples of Bayesian
linear regression, Bayesian multilevel modeling, and
Bayesian confirmatory factor analysis. To support
the pedagogical features of this chapter, the software

code for each example is provided.
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Bayesian Probability

Most students in the social and behavioral sci-
ences were introduced to the axioms of probability
by studying the properties of the coin toss or the
dice roll. These studies address questions such as (1)
What is the probability that the flip of a fair coin will
return heads? and (2) What is the probabilicy that
the roll of two fair die will return a value of seven?
To answer these questions requires enumerating the
possible outcomes and then counting the number
of times the event could occur. The probabilities of
interest are obtained by dividing the number of times
the event occurred by the number of possible out-
comes. But what of more complex situations, such as

the famous “Monty Hall” problem? In this problem, -

named after the host of a popular old game show, a
contestant is shown three doors, one of which has
a desirable prize, whereas the other two have quite
undesirable prizes. The contestant picks a door, but
before Monty opens the door, he shows the contes-
tant another door with an undesirable prize and asks
the contestant whether he or she wants to stay with
the chosen door or switch. To address this situation
requiresan understanding of the Kolmogorovaxioms
of probability (Kolmogorov, 1956) and the Renyi
axioms of conditional probability (Renyi, 1970).
These sets of axioms, although appearing long after
Bayes’ work, provide the theoretical foundation for
Bayes’ Theorem.

The Kolmogorov Axioms of Probability

Before motivating Bayes’ Theorem, it is useful
to remind ourselves of the axioms of probability
that have formed the basis of frequentist statistics.
These axioms of probability can be attributed to the
work of Kolmogorov (1956). This particular set of
axioms relate the notion of probability to the fre-
quency of events over a large number of trials. These
axioms form the basis of the frequentist paradigm of
statistics.

Consider two events denoted A and B. To keep
the example simple, consider these both to be the
flip of a fair coin. Then the following are the axioms
of probability—namely,

L pd) =0

2. The probability of the sample space is 1.0

3. Countable additivity: If 4 and B are mutually
exclusive, then p(A4 or B) = p(A) + p(B). Or,

more generally,
o0 o0
U4 =2 r@, (1)
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which states that the probability of the union of
mutually exclusive events is simply the sum of thej,
individual probabilities. A number of other axioms
of probability can be derived from these three basjc
axioms. Nevertheless, these three can be used to
deal with the relatively easy case of the coin-flipping
example mentioned above. For example, if we toss a
fair coin an infinite number of times, then we expect
it to land heads 50% of the time. Interestingly, this

expectation is not based on having actually tossed the ™~

coin an infinite number times. Rather, this expecta-
tion is a prior belief. Arguably, this is one example
of how Bayesian thinking is automatically embed-
ded in frequentist logic. This probability, and others
like it, satisfy the first axiom that probabilities are
greater than or equal to 0. Second, over an infi-
nite number of coin flips, the sum of all possible
outcomes (in this case, heads and tails) is equal to
one. Indeed, the number of possible outcomes rep-
resents the sample space and the sum of probabilities
over the sample space is one. Finally, assuming that
one outcome precludes the occurrence of another
outcome (e.g., rolling a 1 precludes the occurrence
of rolling a 2), then the probability of the joint
event p(A or B) is the sum of the separate proba-
bilties — that is p(4 or B) = p(A) + p(B). We may

" wish to add to these axioms the notion of indepen-

dent events. If two events are independent, then the
occurrence of one event does not influence the prob-
ability of another event. For example, with two coins
A and B, the probability of A resulting in “heads”
does not influence the result of a flip of B. For-
mally, we define independence as p(4and B) =

pA)p(B).

The Renyi Axioms of Probability
‘In the previous paragraph, we discussed quite
simple cases particularly the case of independent

events. Consider the case of non-independent

events. In this situation, the Kolmogorov axioms
do not take into account how probabilities might
be affected by conditioning on the dependency of
events. An extension of the Kolmogorov system that
accounts for conditioning was put forth by Renyi
(1970). As a motivating example, consider the case
of observing the presence or absence of coronary
heart disease (C) and the behavior of smoking or
not smoking (S). We may be able to argue on the
basis of prior experience and medical research that C
is not independent of S—that is, the joint probabil—
ity p(C,S) # p(C)p(S). To handle this problem,
we define the conditional probability of C “given” S

(e, p(C|S)) as

2(C,8)
(C18) = . (2)
? »(5)
The denominator on the right hand side of Equation
2 shows that the sample space associated with
p(C,S) is reduced by knowing S. Notice that if C
and S were independent, then

- p(C,8)
S = ,
2(€15) 0

_ 2(©p(S)
2(S)
=(C) ' “(3)
which states that knowing S tells us nothing about
C.
Following Press (2003), Renyi’s axioms can be

defined, with respect to our coronary heart disease
example, as follows:

>

1. For any events, 4, B, we have P(A|B) > 0
and p(B|B) = 1.

2. For disjoint events 4; and some event B
o
=D _p41B)
j=1

3. For every collection of events (4, B, C), with
Basubset of C (i.e., B C (), and 0 < p(B|C), we

have
PANBIC)
p(B|O)

Renyi’s third axiom allows one to obtain the condi-
tional probability of A given B, while conditioning
on yet a third variable C.

An important feature of Renyi’s axioms is that
it covers the Kolmogorov axioms as a special case.
Moreover, it is general enough to encompass both
frequentist interpretations of probability as well
as personal belief interpretations of probability
(Ramsey, 1926; Savage, 1954; de Finetti, 1974).
The personal belief interpretation of probability is
central to the subjectivist view of probability embed-
ded in Bayesian statistics. See Press (2003) for a more
detailed discussion. '

p(AIB) =

Bayes’ Theorem

An interesting feature of Equation 2 underpins
Bayes’ Theorem. Specifically, joint probabilities are
symmetric—namely, p(C,S) = p(S, C). There-

fore, we can also express the conditional probabilicy

S

of smoking, S, given observing coronary heart
disease, C, as

(S, C
w10y =259,

2(C)

Because of the symmetry of the joint probabilities,
we obtain

(4)

2(C18)p(S) = p(S|C)p(C). (5)
Therefore,
k 2(SIOp(C)
ClS) = ——=-"", 6
2(C|S) 205) (6)

Equation 6 is Bayes' Theorem. In words, Bayes’
Theorem states that the conditional probability of an
individual having coronary heart disease given that
he smokes is equal to the probability that he smokes
given that he has coronary heart disease times the
probability of having coronary heart disease. The
denominator of Equation 6, p(S), is the marginal
probability of smoking. This can be considered the
probability of smoking across individuals with and
without coronary heart disease, which we write as
2(8) = p(SIC) + p(S|—=C).! Because this marginal
probability is obtained over all possible outcomes of
coronary heart disease, it does not carry informa-
tion relevant to the conditional probability. In fact,
2(8) can be considered a normalizing factor, which
ensures that the probability sums to one: Thus, it is
not uncommon to see Bayes’ Theorem written as

2(CI8) x p(SIO)p(C). @)

Equation 7 states that the probability of observing
coronary heart disease given smoking is proportional
to the probability of smoking given coronary heart
disease times the marginal probability of coronary
heart disease. Let’s return to the Monty Hall prob-
lem to demonstrate the complexities of conditional
probability and how a Bayesian perspective can be
helpful. At the start of the game, it is assumed that
there is one desirable prize and that the probability
that the desirable prize is behind any of the three
doors is 1-in-3. Once a door is picked, Monty Hall
shows the contestant a door with an undesirable
prize and asks the contestant if he or she would like
to switch from the door he or she originally chose.
It is important to note that Monty will not show
the contestant the door with the desirable prize.
Also, we assume that because the remaining doors
have undesirable prizes, the door Monty opens is
chosen basically at random. Given that there are
two doors remaining in this three-door problem,

the probability is 1/2. Thus, Monty’s knowledge of
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where the prize is located plays a crucial role in this
_problem. With the following information in hand,
we can obtain the necessary probabilities to apply
Bayes' Theorem. Assume the contestant picks door
A. Then, the necessary conditional probabilities are

1. p(Monty opens door B|prize is behind A) = %
2. p(Monty opens door B|prize is behind B) = 0.
3. p(Monty opens door Blprize is behind C) = 1.

The final probability results from the fact that there
is only one door for Monty to choose given that the
contestant chose door A and the prize is behind door
B. Let M represent Monty opening door B.-Then,
the joint probabilities can be obtained follows.

1 1 1
P(M’A) ZP(MlA)P(A) = E X —3— = —6~,
1
p(M,B) = p(M|B)p(B) =0 x 3 =0, and
1

|
P, C) = p(MICH(O) =1 % 5 = 3.
Before applying Bayes' Theorem, note that we
have to obtain the marginal distribution of Monty
opening door B. This is

pM) = p(M, A) + p(M, B) + p(M, C)

Ll L ]
6 3 2

Finally, we can now apply Bayes’ Theorem to
obtain the probabilities of the prize lying behind
door A or door C.

_pMIpA) x5 1
A = =T =3
_pMICHEC) 52
p(CIM)_———P(M) _1x%_3

Thus, from Bayes’ Theorem, the best strategy on the
part of the contestant is to switch doors.

Bayesian Statistical Inference

The material presented thus far has concerned
Bayesian probability. The goal of this chapter is to
present the role of Bayes’ Theorem as it pertains
to statistical inference. Setting the foundations of
Bayesian statistical inference provides the framework
for application to a variety of statistical models com-
monly employed in social and behavioral science
research.

To begin, denote by ¥ a random variable that
takes on a realized value y. For example, a person’s
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socioeconomic status could be considered a random
variable taking on a very large set of possible values,
Once the person identifies his/her socioeconomic
status, the random variable Y is now realized as y.In

a sense, ¥ is unobserved-it is the probability mode]

that we wish to understand from the actual data
values y.

Next, denote by 6 a parameter that we believe
characterizes the probability model of interest. The

parameter 6 can be a scalar (i.c., a single parameter), =~

such as the mean or the variance of a distribution, or
it can be vector-valued (i.e., a collection of param-
eters), such as the parameters of a factor analysis
model. To avoid too much notational complexity,
for now we will use € to represent either scalar
or vector valued parameters where the difference
will be revealed by the context. Of importance to
this chapter, 6 could represent the parameters of an
underlying hypothesized model—such as a regression
model or structural equation model.

We are concerned with determining the probabil-
ity of observing y given the unknown parameters 6,
which we write as p(y|9). Equivalently, we are con-
cerned with obtaining estimates of the population
parameters given the data expressed as the “likeli-
hood” and formally denoted as L(8]y). Often we
work with the log-likelihood written as /(8]y).

The key difference between Bayesian statistical
inference and frequentist statistical inference con-
cerns the nature of the unknown parameters 6. In
the frequentist tradition, the assumption is that 8 is
unknown but fixed. In Bayesian statistical inference,

8 is considered random, possessing a probability dis- ‘

tribution that reflects our uncertainty about the true
value of 8. Because both the observed data y and the
parameters 6 are assumed random, we can model
the joint probability of the parameters and the data
as a function of the conditional density of the data
given the parameters, and the prior distribution of
the parameters. More formally,

20,3 = p(yl6)p(0). (8)

Following Bayes' Theorem described earlier, we
obtain the following,
() 2

where p(0|y) is referred to as the posterior distribu-
tion of the parameters 6 given the observed data y.
Thus, from Equation 9, the posterior distribution
of 0 given y is equal to the data distribution 2(»10)
times the prior distribution of the parametets (@)
normalized by p(y) so that the posterior distribution

sums {or integrates) to one. For dfscrete variables
20 =Y p010)p®), (10)
6
and for continuous variables

2(0) = /e 20I0p@do. (1)

Note that the denominator in Equation 9 does not
involve model parameters, so we can omit the term
and obtain the unnormalized posterior density

2Oly) x p(y16)p(6). (12)

Consider the data density p(y|0) on the right-
hand side of Equation 12. When expressed in terms

- of the unknown parameters 6 for fixed values of i

this term is the /ikelihood L(6|y), which we defined

earlier. Thus, Equation 12 can be re-written as

201y) o LOy)p(6)- (13)

Equation 12 (or Equation 13) represents the core
of Bayesian statistical inference and is what sepa-
rates Bayesian statistics from frequentist statistics.
Specifically, Equation 13 states that our uncertainty
regarding the parameters of our model, as expressed
by the prior density p(0), is weighted by the actual
data p(y|0) (or equivalently, L(f]y)), yielding an
updated estimate of our uncertainty, as expressed in

the posterior density p(0]y).

The Nature of the Likelihood

Equation 13 states that Bayes’ Theorem can be -

written as the product of the likelihood of the
unknown parameters for fixed values of the data and
the prior distribution of the model parameters. In
this section, we consider two common statistical dis-
tributions and their likelihoods before moving on
to discuss prior distributions. Specifically, we will

* consider the binomial distribution and normal dis-

tribution. Before beginning, however, it is necessary
to discuss the assumption of exchangeability.

Exchangeability arises from de Finetti’s Theorem
(de Finetti, 1974) and implies that the subscripts of a
vector of data (e.g., y1,2, . . . y) do not carry infor-
mation that is relevant to describing the probability
distribution of the data. In other words, the joint
distribution of the data, £(y1, 52, . . . y,) is invariant
to permutations of the subscripts.?

As a simple example of exchangeability, consider
a vector of responses to a 10-item test where a cor-
rect response is coded “1” and an incorrect response
is coded “0”. Exchangeability implies that only the
total number of correct responses matter—not the

location of those correct responses in the vector.
Exchangeability is a subtle assumption insofar as
it means that we believe that there is a parameter
6 that generates the observed data via a statisti-
cal model and that we can describe that parameter
without reference to the particular data at hand
(Jackman, 2009). As an example, consider the
observed responses on an IQ test. The fundamental

idea behind statistical inference generally is that the

observed responses on an IQ test are assumed to be
generated from a population distribution (e.g., the
normal distribution) characterized by a parameter
0 (e.g., the population mean). As Jackman (2009)
has noted the fact that we can describe 6 with-
out reference to a particular set of IQ data is, in
fact, what is implied by the idea of a prior distri-
bution. In fact, as Jackman noted “the existence of
a prior distribution over a parameter is a result of
de Finetti’s Representation Theorem, rather than an
assumption” (p. 40, italics Jackman’s). It is impor-
tant to note that exchangeability is weaker than
the statistical assumption of independence. In the
case of two events—say 4 and B—independence
implies that p(A|B) = p(A). If these two events are
independent, then they are exchangeable; however,
exchangeability does not imply independence.

Example 1: the binomial probability model

First, consider the number of correct answers on
a test of length ». Each item on the test represents a
“Bernoulli trial”, with y outcomes 0 =wrongand 1 =
right. The natural probability model for data arising
from 7 Bernoulli sequences is the binomial sampling
model. Under the assumption of exchangeability—
meaning the indexes 1 ... # provide no relevant
information—we can summarize the total number
of successes by 7. Letting 6 be the proportion of
correct responses in the population, the binomial
sampling model can be written as

P(7|9) = Bin(}l|n,6) = (j)e](l _9)(11—}')’
' (14)

~ where (;z) is read as “n choose y” and refers to the

number of successes y in a sequence of “right/wrong”
Bernoulli trials that can be obtained from an #-item
test. The symbol Bin is shorthand for the binomial

density function.
Example 2: the normal sampling model
The likelihood function for the parame-

ters of the simple normal distribution can be
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written as

1 —w)?
folu.o?) = Tig P (—%) . (15)

Under the assumption of independent observations,
we can write Equation 15 as

ool o® = [ [f0ilu. 0,

1 n/2
- ( 27[02)
20— )2

exp| =7 |’

= Lo, (16)

where 0 = (i, 7).

The Nature of the Prior Distribution

It is useful to remind ourselves of the reason why
we specify a prior distribution on the parameters. .
The key philosophical reason concerns our view that
progress in science generally comes about by learning
from previous research findings and incorporating
information from these findings into our present
studies. Upon reflection, it seems obvious that no
study is conducted in the complete absence of pre-
vious research. From experimental designs to path
diagrams, the information gleaned from previous
research is almost always incorporated in our choice
of designs, variables to be measured, or conceptual
diagrams to be drawn. Researchers who postulate a
directional hypothesis for an effect are almost cer-
tainly using prior information about the direction
that an estimate must rake. Bayesian statistical infer-
ence, therefore, simply requires that our prior beliefs
be made explicit but then moderates our prior beliefs
by the actual data in hand. Moderation of our prior
beliefs by the data in hand is the key meaning behind
Equation 12.

But how do we choose a prior? The general
approach to considering the choice of a prior is
based on how much information we believe we have
prior to the data collection and how accurate we
believe that information to be (Lynch, 2007). This
issue has also been discussed by Leamer (1983),
who orders priors on the basis of degree of confi-
dence. Leamer’s hierarchy of confidence is as follow:
truths (e.g., axioms) > facts (data) > opinions
(e.g., expert judgement) > conventions (e.g., pre-set

alpha levels).

412 BAYESIAN STATISTICAL METHODS

An interesting feature of this hierarchy, as noted
by Leamer, concerns the inherent lack of “objectiv-
ity” in such choices as pre-set alpha levels, or any of
a number of assumptions made in linear regression-
based models. In describing the “whimisical” nature
of statistical inference, Leamer goes on to argue that
the problem should be to articulate exactly where
a given investigation is located on“this hierarchy.
The strength of Bayesian inference lies precisely in-
its ability to incorporate existing knowledge into
statistical specifications.

OBJECTIVE PRIORS
A very important discussion regarding general

types of prior distributions can be found in Press

(2003). In his book, Press distinguishes between
objective versus subjective prior distributions. The
notion of an objective prior relates to having very lit-
tle information regarding the process that generated
the data prior to the data being collected.

Public Policy Prior

One type of objective prior discussed by Press
(2003) is the public policy prior. The public policy
prior concerns reporting the results of an experi-
ment or study to the public that contains a minimal
amount of the researcher’s subjective judgements as
possible.

To take an example from education, suppose
one is interested in a policy to reduce class size
because it is viewed as being related to aca-
demic achievement—Ilower-class sizes being associ-
ated with higher academic achievement, particularly
for low income students. Assume, for this exam-
ple, that based on previous research, the investigator
has a sense of how much student achievement will
increase (based on a standardized test) for a given
reduction in class size. From the standpoint of edu-
cational policy, the results reported to stakeholdets
should not depend on the prior beliefs of an indi-

vidual researcher. In this case, the researcher may.

decide to use a vague prior reflecting an unwilling-
ness to report an effect of reduced class size that is
based on a specific prior belief.3

Non-informative Prior

In some cases we may not be in possession of”’
enough prior information to aid in drawing poste- .
rior inferences. From a Bayesian perspective, thls-‘k
lack of information is still important to consider :

and incorporate into our statistical sPeciﬁcatior.lS'
In other words, it is equally important to quant}f}’
our ignorance as it is to quantify our cumulative
understanding of a problem at hand.

The standard approach to quantifying our igno-
rance is to incorporate a non-informative prior into
our specification. Non-informative priors are also
referred to as vague or diffuse priors. Perhaps the most
sensible non-informative prior distribution to use in
this case is the uniform distribution over some sensi-
ble range of values. Care must be taken in the choice
of the range of values over the uniform distribution.
Specifically, a Uniform[~00, oc] is an improper prior
distribution insofar as it does not integrate to 1.0 as
required of probability distributions.

Jeffreys’ Prior

A problem with the uniform prior distribution is
that it is not invariant to simple transformations. In
fact, a transformation of a uniform prior can result
in a prior that is not uniform and will end up favor-
ing some values more than others. As pointed out by
Gill (2002), the invariance problem associated with
uniform priors, and indeed the use of uniform priors
generally, had been greeted with extreme skepticism
by many early statisticians and used as the founda-
tion of major critiques of Bayesian statistics. Despite
the many criticisms against the uniform prior, its
use dominates applied Bayesian work. Justification
for the use of the uniform prior has been given in
Bauwens, Lubrano, and Richard (2003) who have
pointed out that (1) the effect of the uniform prior
tends to diminish with increasing sample size; (2) the
uniform prior is useful when models contain nui-
sance parameters, such as the variance of the normal
distribution when the mean is of interest, as they
will be integrated out anyway; and (3) the uniform
distribution is the limit of certain conjugate distribu-
tions. In Bayesian statistics, conjugate distributions
are those that, when multiplied by the likelihood via

. Bayes’ Theorem, yield posterior distributions in the

same distributional family as the prior distribution.
In specifically addressing the invariance problem
associated with the uniform distribution, Jeffreys
(1961) proposed a general approach that yields a
prior that is invariant under transformations. The
central idea is that the subjective beliefs contained
in the specification of the prior distribution of a
parameter 6 should not be lost when there is a one-
to-one transformation from 6 to another parameter,
say ¢. More specifically, using transformation-of-
variables calculus, the prior distribution p(¢) will
be equivalent to p(9) when obtained as

N

2(®) = p©6) l

49’. (17)

d¢

On the basis of the relationship in Equation 17,
Jeffreys (1961) developed a non-informative prior
distribution that is invariant under transformations,
written as

20) o< [1(6)]1/2, (18)

where () is the Fisher information matrix for 6.
Jeffreys’ prior is obtained as follows. Following
Gelman etal. (2003), let /' (x|@) be the likelihood for

6 and write its associated Fisher information matrix

as
21 %
1(9)=[—EXIH(L§§§"@)}. (19)

Next, we write the Fisher information matrix for ¢

as
a2( x 2
1@) = | B ()] o

From the change of variables expression in Equation
17, we can rewrite Equation 20 as

92(l 401\ 12
oL (g |
" (21)

Bl

46 |?
103

Therefore,

» 40
1/2 _ 1/2
I(@)/* = 1(0)/* x 20 ‘ ) (22)

from which we obtain the relationship to Equation
18. The Jeffreys prior can also be extended to a
vector of model parameters and thus is applicable
to regression models and their extensions (see Gill,
2002).

Press (2003) then goes on to weigh the advantages
and disadvantages of objective priors. Following
Press (2003), in terms of advantages:

1. Objective priors can be used as benchmarks
against which choices of other priors can be

.compared.

2. Objective priors reflect the view that little
information is available about the process that
generated the data. ,

3. There are cases in which the results of a
Bayesian analysis with an objective prior provides
equivalent results to those based on a frequentist
analysis — although there are philosophical
differences in interpretation that we allude to later
in the chapter.
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4. Objective priors are sensible public policy
priors. ' :

In terms of disadvantages, Press (2003) noted

1. Objective priors can lead to improper results
when the domain of the parameters lie on the real
number line.

2. Parameters with objective priors are often
independent of one another, whereas in most
multiparameter statistical models, parameters are
correlated. The problem of correlated model
parameters is of extreme importance for methods
such as structural equation modeling (see e.g.,
Kaplan & Wenger, 1993).

3. Expressing complete ignorance about a
parameter via an objective prior leads to incorrect
inferences about functions of the parameter.

SUBJECTIVE PRIORS

To motivate the use of subjective priors, consider
again the class size reduction example. In this case,
we may have a considerable amount of prior infor-
mation regarding the increase in achievement arising
from previous investigations. It may be that previ-
ous investigations used different tests of academic
achievement, but when examined together, it has
been found that reducing class size to approximately
17 children per classroom results in one-forth of
a standard deviation increase (say, about 8 points)
in academic achievement. In addition to a prior
estimate of the average achievement gain caused
by reduction in class size, we may also wish to
quantify our uncertainty about the exact value of
6 by specifying a probability distribution around
the prior estimate of the average. Perhaps a sensible
prior distribution would be a normal distribution
centered at § = 8. However, let us imagine that
previous research has shown that achievement gains
caused by class size reduction has almost never been
less than 5 points and almost never more than 14
points (almost a full standard deviation). Taking this
range of uncertainty into account, we might pro-
pose a prior distribution on @ that is N(8,1). The
parameters of this prior distribution 6 = N(8,1)
are referred to as hyperparameters.

The careful reader may have wondered if set-
ting hyperparameters to fixed values violates the
essence of Bayesian philosophy. To address that con-
cern, note first that the Bayesian approach treats the
hyperparameters as elicited quantities that are kzown
and fixed. The Bayesian approach is to be contrasted

with the frequentist approach that treats parameters
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as unknown and fixed. Second, it is not necessary
to set hyperparameters to known and fixed quan-
ticies. In a fully hierarchical Bayesian model, it is
possible to specify a probability distribution on the

hyperparameters — referred to as a hyperprior.

Informative-Conjugate Priors

In the previous section, we considered the situa-
tion in which there may not be much prior informa-
tion that can be brought to bear on a problem. In
that situation we focused on objective priors. Alter-
natively, it may be the case that some information can
be brought to bear on a problem and be systemati-
cally incorporated into the prior distribution. Such
subjective priors are deemed informative. One type
of informative prior is based on the notion of a conju-
gate distribution. As noted earlier, a conjugate prior
distribution is one that, when combined with the
likelihood function, yields a posterior that is in the
same distributional family as the prior distribution.
Conjugacyisaveryimportantand convenient feature
because if a prior is not conjugate, then the resulting
posterior distribution may have a form that is not
analytically simple to solve. Arguably, the existence
of numerical simulation methods for Bayesian infer-
ence, such as Markov chain Monte Carlo (MCMC)
estimation, may render conjugacy less of a problem.
We focus on conjugate priors in this section.

Example 3: The Beta Prior

As an example of a conjugate prior, consider esti-
mating the number of correct responses y on a test of
length 7. Let  be the proportion of correct responses.
We first assume that the responses are independent
of one another. The binomial sampling model was
given in Equation 14 and reproduced here

p(y10) = Bin(y|n,0) = (Yn)g}(l — ),
(23)

One choice of a prior distribution for § is the

beta(a,b) distribution. The beta distribution is a -
continuous distribution appropriate for variables
that range from zero to one. The terms 2 and.

b are referred to as hyperparameters and charac-
terize the distribution of the parameters, which

for the beta distribution are the scale and shape _

parameters, respectively.4 The form of the beta(a,b)
distribution is

' T+
26:4.0) = 5 TG

where T" is the gamma(a,b) distribution. Ignor--

ing terms that don’t involve model parameters, W&

011 — )¢ 1, (24)

obtain the posterior distribution

_ C(n+a+b) gr+a-1
Fy+a)(n—y+b)

(1— @)+t @5)

2@ly)

which is a beta distribution with parameters 4/ =
a+yand &' = b+ n— y. Thus, the beta prior for

the binomial sampling model is conjugate.

Example 4: The Normal Prior

This next example explores the normal prior for
the normal 'sampling model. Let y denote a data
vector of size #n. We assume that y follows a normal
distribution shown in Equation 15 and reproduced
here

. 1 ()’ _ M)2
1,07) = —e ex (——~— e
fo g P =
Consider that our prior distribution on the mean
is also normal with mean hyperparameter, « and
variance, 2, which for this example are known.
The prior distribution can be written as

1 (1 — k)?
72_;;1-—2 exp (——2‘[2——) . (27)

After some algebra, the posterior distribution can be
obtained as

fulie, 7 =

Kk 4 nx 22
+02 T°0

~N|Z ,
fly) Rt

s (28)

and so we see that the normal prior is conjugate for
the normal likelihood.

The posterior distribution in Equation 28 reveals
some interesting features regarding the relationship
between the data and the prior. To begin, we see
that & is only dependent on ¥, the sample mean;
hence, x is sufficient for it Second, we see that as the
sample size increases, the data (here, x) become more
important than the prior. Indeed, as the sample size
approaches infinity, there is no information in the
prior distribution that is of relevance to estimating
the moments of the posterior distribution. To see
this, we compute the asymptotic posterior mean as

Kk 4 nx

A . 7 7

lim 4= lim +—2,
n—>00 n—oo L 4 2
72 o2

2
Ko bt
72 +x

= lim 25— =x. (29)
n—>o0 I 4

nt?
Finally, we introduce the terms 1/72 and 7/02 to
refer to the prior precision and data precision, respec-

tively. The role of these two measures of precision

can be seen by once again examining the variance
term for the normal distribution in Equation 28.

Specifically,

.o . 1

lim ¢?2 = lim ———,
n—00 n—o00 L + 2
T o2

2 2

. o (o2

= lim 5——=—. (30)
n—>0o0 0 + 7

A similar result emerges if we consider the case where
we have very little information regarding the prior
precision. That is, choosing a very large value for 72

gives the same result.

Example 5: The Inverse-Gamma prior

In most practical applications, the variance in the
normal sampling model is unknown. Thus, we need
to derive the joint prior density p(u, 02). Derivation
of the joint prior density is accomplished by factor-
ing the joint prior density into the product of the
conditional density and marginal density—that is,

2(u,0%) = p(ulo?)p(a?), (31)

where, in this example,
wlo® ~ N(ug, 02 /n) (32)
0% ~ inverse-Gamma(vg /2,v052/2),  (33)

where vy > 0 is a “degree-of-freedom” parameter.
Another important feature of the inverse-Gamma
distribution is that if the random variable x ~
inverse-Gamma(a, ), then 1/X ~ Gamma(a, ).
The relationship between the inverse-Gamma and
Gamma distributions is important because 1/52 is
the precision parameter. Thus, in the case of the nor-
mal model, an inverse-Gamma prior can be placed

on 02 or a Gamma prior can be place on 1/02.

Bayesian Hypothesis Testing

Bayes’ Theorem shows that the posterior distri-
bution is composed of encoded prior information
weighted by the data. With the posterior distribu-
tion in hand, it is of interest to obtain summaries
of its moments, such as the mean and variance. In
addition, interval summaries of the posterior distri-
bution can be obtained. Summarizing the posterior
distribution provides the necessary ingredients for
Bayesian hypothesis testing,

Before covering summaries of the posterior dis-
tribution and their role in Bayesian hypothesis
testing, it may be useful to place the Bayesian
approach to hypothesis testing in contrast to the
more common frequentist approach. Clearly, a
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critically important component of applied statis-
tical modeling is hypothesis testing. Indeed, a
considerable amount of time is spent in introduc-
tory statistics courses laying the foundation for
the frequentist perspective on hypothesis testing,
beginning with Fisher (1941/1925) and culmi-
nating in the Neyman-Pearson approach, which
is now the standard in the social and behavioral
sciences, (Neyman & Pearson, 1928). An inter-
esting aspect of the Neyman-Pearson approach to
hypothesis testing is that students (as well as many
seasoned researchers) appear to have a very diffi-
cult time grasping its principles. In a review of
the problem of hypothesis testing in the social and
behavioral sciences Gigerenzer, Krauss, and Vitouch
(2004) argued that much of the problem lies in
the conflation of Fisherian hypothesis testing and
the Neyman-Pearson approach to hypothesis test-
ing. For interesting discussions on this problem, see
Cohen (1994), Gigerenzer et al. (2004), and the
volume by Harlow, Mulaik, and Steiger (1997).
Briefly, Fisher’s approach to hypothesis testing
specifies only the null hypothesis. A conventional
significance level is chosen (usually the 5% level).
. Once the test is conducted, the result is either sig-
* nificant (p < 0.05) or it is not (p > 0.05). If the
resulting test is significant, then the null hypothe-
sis is rejected. However, if the resulting test is not
significant, then no conclusion can be drawn. As
Gigerenzeretal. (2004) has pointed out, Fisherdevel-
oped a later version of his ideas wherein one only
reports the exact significance level arising from the
test and does not place a “significant” or “nonsignif-

icant” value label to the result. In other words, one °

reports, say, p = 0.045 but does not label the result
as “significant” (Gigerenzer et al., 2004, p. 399).

In contrast to Fisher’s ideas, the approach advo-
cated by Neyman and Pearson requires that two
hypotheses be specified: the null hypothesis and the
alternative hypothesis. By specifying two hypothe-
ses, one can compute a desired tradeoff between
two types of errors: Type I errors (the probability
of rejecting the null when it is true, denoted as o)
and Type II errors (the probability of not rejecting
the null when it is false, denoted as §).

The conflation of Fisherian and Neyman-Pearson
hypothesis testing lies in the use and interpretation
of the p-value. In Fisher’s paradigm, the p-value is
a matter of convention, with the resulting outcome
being based on the data. However, in the Neyman-
Pearson paradigm, o and B are determined prior
to the experiment being conducted and refer to a
consideration of the cost of making one or the other
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error. In other words, the p-value and & are pg¢
the same thing. The confusion between these twq
concepts is made worse by the fact that statisticy]
software packages often report a number of p-valyes
that a researcher can choose after having conducted

the analysis (e.g., 0.001, 0.01, 0.05). Thiscan lead 5 .

researcher to set o ahead of time, as per the Neyman-
Pearson school, but then communicate a different
level of “significance” after running the test.

Misunderstandings of the Fisherian approach or ™~}
the Neyman-Pearson approach to hypothesis testing

is not a criticism of these methods per se. However,
from the frequentist point of view, a criticism often

leveled at the Bayesian approach to statistical infer-
ence is that it is “subjective,” whereas the frequentist
. q

approach is “objective.” The objection to “subjec-
tivism” is somewhat perplexing insofar as frequentist
hypothesis testing also rests on assumptions that do
not involve data. The simplest and most ubiquitous
example is the test of a null hypothesis against an
alternative hypothesis, characteristic of the Neyman-
Pearson paradigm. In cases where the value of the null
hypothesisisstated (e.g., something other than zero),
the question that is immediately raised is where that
value came from. Presumably, a (non-null) value of
the null hypothesis must be credible, thus restricting
the values that the parameters could sensibly take on.
A key difference between Bayesian and frequentist
approaches to hypothesis testing is that the Bayesian
approach makes this priorinformation explicit and
does not find the idea that parameters possess proba-
bility distributions contrary to a coherent scheme of
hypothesis testing.

Point Estimates of the Posterior
Distribution

For frequentist and Bayesian statistics alike,
hypothesis testing proceeds after obtaining sum-
maries of relevant distributions. For example, in
testing for the differences between two groups (e.g.,
a treatment group and a control group), we first
summarize the data, obtaining the means and stan-
dard errors for both groups, and then perform the
relevant statistical tests. These summary statistics
are considered “suffigient” summaries of the data
— in a sense, they stand in for data. The dif-
ference between Bayesian and frequentist statistics
is that with Bayesian statistics, we wish to obtain
summaries of the posterior distribution. The expres-
sions for the mean. and variance of the posterior
distribution come from expressions for the mean
and variance of conditional distributions generally.

Specifically, for the continuous case, the mean of the
posterior distribution can be written as

+00
/ 0p©ly)db. (34)

—o0

E@ly) =

Thus, the posterior mean is obtained by averaging
over the marginal distribution of 6. Similarly, the
variance of 8 can be obtained as

var(®ly) = E[© — E[©OyD*1y),
+o0
| @ - Ewp e,

-0

+o00
f (02 — 20E16|y])

+ E[01y1*)p(01y)48,
= E[0%|y] — El6]y]%. (35)

The mean and variance of the posterior distri-
bution provide two simple summary values of the
posterior distribution. Another summary measure
would be the mode of the posterior distribution,
referred to as the maximum a posteriori (MAP) esti-
mate. Those measures, along with the quantiles
of the posterior distribution, provide a complete
description of the distribution.

Interval Summaries of the Posterior
Distribution

In addition to these point estimates we are often
interested in obtaining intervals for, say, the mean
of the posterior distribution. There are two general
approaches to obtaining interval summaries of the
posterior distribution. The first is the so-called cred:-
ble interval, also referred to as the posterior probability

interval, and the second is the highest posterior density
(HPD) interval.

Credible Intervals

One important consequence of viewing parame-
ters probabilistically concerns the interpretation of
confidence intervals. Recall that the frequentist con-
fidence interval requires that we imagine a fixed
parameter, for example, the population mean p.
Then, we imagine an infinite number of repeated
samples from the population characterized by u.>
For any given sample, we obtain the sample mean
x and form a 100(1 — @)% confidence inter-
val. The correct frequentist interpretation is that

100(1 — )% of the confidence intervals formed
this way capture the true parameter u under the
null hypothesis. Notice that from this perspective,
the probability that the parameter is in the interval
is either zero or one.

In contrast, the Bayesian perspective forms a
credible interval (also known as a posterior proba-
bility interval). The credible interval is obtained
directly from the quantiles of the posterior distribu-
tion of the model parameters. From the quantiles,
we can directly obtain the probability that a param-
eter lies within a particular interval. Therefore, a
100(1 — er)% credible interval means that the prob-
ability that the parameter lies in the interval is
100(1 — a)%. Again, notice that this is entirely
different from the frequentist interpretation and
arguably aligns with common sense.

In formal terms, a 100(1 — )% credible interval
for a particular subset of the parameter space 6 is

defined as .
l—a= / p@y)d6. (36)
C

The credible interval will be demonstrated through
the examples given later in this chapter.

Highest Posterior Density

The simplicity of the credible interval notwith-
standing, it is not the only way to provide an interval
estimate of a parameter. Following the argument set
by Boxand Tiao (1973), when considering the poste-
rior distribution of a parameter 6, there is a substan-
tial part of the region of that distribution where the
density isquite small. It maybe reasonable, therefore,
to construct an interval in which every point inside
the interval has a higher probability than any point
outside the interval. Such a construction is referred
to as the HPD interval. More formally,

Definition 1 Let p(0|y) be the posterior density
Sfunction. A region R of the parameter space 0 is called
the HPD region of the interval 1 — o if

L.pr@eRly)=1—«
2. For01 € Rand 6, & R, pr(61y) = pr(62y). ‘

Note that for unimodal and symmetric distribu-
tions, such as the uniform distribution or the normal
distribution, the HPD is formed by choosing tails
of equal density. The advantage of the HPD arises
when densities are not symmetric and/or are not
unimodal. In fact, this is an important property of
the HPD and sets it apart from standard credible
intervals. Following Box and Tiao (1973), if p(8|y)
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is not uniform over every region in @, then the HPD
region 1 — o is unique. Also, if p(01]y) = p(021y),
then these points are included (or excluded) by a
1 — o HPD region. The opposite is true as well—
namely, if p(61]y) # p(62]y)—then a 1 —« HPD
region includes one point but not the other (Box &
Tiao, 1973, p. 123).

Bayesian Model Evaluation and
Comparison

In many respects, the frequentist and Bayesian
steps in model building are the same. First, an ini-
tial model is specified relying on a lesser or greater
degree of prior theoretical knowledge. In fact, at
this first stage, a number of different models may
be specified according to different theories, with the
goal being to choose the “best” model, in some sense
of the word. Second, these models will be fit to data
obtained from a sample from some relevant pop-
ulation. Third, an evaluation of the quality of the
models will be undertaken, examining where each
model might deviate from the data, as well as assess-
ing any possible. model violations. At this point,
model respecification may come into play. Finally,
depending on the goals of the research, the “best
model” will be chosen for some purpose.

Despite the similarities between the two
approaches with regard to the broad goals of model

“building, there are important differences. A major
difference between the Bayesian and frequentist
goals of model building lie in the model specification
stage. In particular, because the Bayesian perspective
views parameters as possessing probability distribu-
tions, the first phase of model building will require
the specification of a full probability model for the
data and the parameters. The probability model
for the data is encoded in the likelihood, and the
probability model for the parameters is encoded in
the prior distribution. Thus, the notion of model
fit implies that the full probability model fits the
data, in some sense, and lack of model fit may
well result from incorrect specification of the prior
distribution.

Arguably, another difference between the
Bayesian and frequentist goals of model building
relate to the justification for choosing a particular
model among a set of competing models. Specif-
ically, model building and model choice in the
frequentist domain is based primarily on choosing
the model that best fits the data. Model fit has cer-
tainly been the key motivation for model building,
respecification, and model choice in the context of
structural equation modeling (see Kaplan, 2009).
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In this section, we examine the notion of mode|
building and model fit and discuss a number of
commonly used Bayesian approaches. We will first
introduce Bayes factors as a very general means of
choosing from a set of competing models. This
will be followed by a special case of the Bayes
factor, referred to as the Bayesian information cri-
terion. Then, we will consider the Deviance infor-
mation criterion. Finally, we will consider the idea
of borrowing strength from a number of com-
peting models in the form of Bayesian model
averaging.

Bayes Factors

A very simple and intuitive approach to model
building and model choice uses so-called Bayes fac-
tors (Kass & Raftery, 1995). In essence, the Bayes
factor provides a way to quantify the odds that the
data favor one hypothesis over another. A key ben-
efit of Bayes factors is that models do not have
to be nested. Following Raftery (1995), consider
two competing models, denoted as M7 and M,
that could be nested within a larger space of alter-
native models or possibly obtained from distinct
parameter spaces. Further, let 81 and 6, be two
parameter vectors. From Bayes’ Theorem, the pos-
terior probability that — for example, M;—is the
model preferred by the data can be written as

P M)p(My)

POIM)p(M) + p(y|M)p(M2)’
37)

pMily) =

where
pUIMy) = /P(yl91:M1)P(91|M1)d91 (38)

is referred to as the marginal probability or pre-
dictive probability of the data given AM). From
here, the posterior odds for M over M, can be
written as

M) _ [P()’IMO} y [p(M1)] (39)
pMaly)  Lp(|M2) pM) |

where the first term on the right hand side of
Equation 39 is the Bayes factor (BF), defined as

_ pUylMy) 40
BF_PO"MZ) (40)

_ [ 20161, M)p(611M1)d6y
[ 2162, M2)p(021M3) 6,

In words, the quantity on the left-hand side of

Equation 39 is the posterior probability of the data

favoring My over M,. This posterior probability
is related to the prior odds p(M;)/p(M3) of the
data favoring M) over M3 weighted by the marginal
likelihoods p(y|M1)/p(y|M2) as seen in Equation
40. Notice that assuming neutral prior odds—that
is, p(M1) = p(M;) = 1/2—the Bayes factor is
equivalent to the posterior odds.

Rules of thumb have been developed to assess
the quality of the evidence favoring one hypothesis
over another using Bayes factors. Following Kass and
Raftery (1995, p. 777) and using M as the reference

model,

2log.(BF12) BF, Evidence against M,

Oto2 lto3 Not worth more than
a bare mention
2t06 3 to 20 Positive
6o 10 20 to 150 Strong
> 10 > 150

Very strong

The Bayesian Information Criterion

A difficulty with using Bayes factors for hypothe-
sis testing is the requirement that priors be specified.
An alternative that does not require the introduc-
tion of prior densities can be obtained using the
Bayesian information criterion (BIC), also referred
to as the Schwarz criterion (SC). The BIC is
defined as

BIC = —2log(0ly) + plog(n),  (41)

where —210gé[y describes model fit whereas
plog(n) is a penalty for model complexity, where
2 represents the number of variables in the model
and 7 is the sample size.

As with Bayes factors, the BIC is often used
for model comparisons. Specifically, the differ-
ence between two BIC measures compaﬁng—for
example, M) to Myr—-can be written as

A(BICi2) = BICs) — BICu),
= log(61ly) — log(6aly)
1
=S —p)logln).  (42)

However, unlike the Bayes factor, there is no exist-
ing rule of thumb regarding the size of the difference
between the BICs of two competing models that
would guide a choice. In other words, among com-
peting models, the one with the smallest BIC value
is to be chosen.

The Deviance Information Criterion

Although the BIC is derived from a funda-
mentally Bayesian perspective, it is often pro-
ductively used for model comparison in the fre-
quentist domain. Recently, however, an explicitly
Bayesian approach to model comparison was devel-
oped by Spiegelhalter, Best, Carlin, and Linde
(2002) based on the notion of Bayesian deviance.

Consider a particular model proposed for a set of
data, defined as p(y16). Then, Bayesian deviance can
be defined as

D) = —2log[p(y10)] + 2log[h(y)] 43)

where, according to Spiegelhalter et al. (2002), the
term A(y) is a standardizing factor that does not
involve model parameters and thus is not involved
in model selection. Note that although Equation 43
is similar to the BIC, it is not, as currently defined,
an explicit Bayesian measure of model fit. To accom-
plish this, we use Equation 43 to obtain a posterior
mean over 6 by defining

D(6) = Ep[—2loglp(y10)|y] + 2log[h(y)], (44)

and this is referred to as the deviance information
criterion (DIC). It has been suggested by Lee (2007,
p- 128) that if the difference between the DIC values
of two competing models is less than 5.0 and the
two models give substantively different conclusions,
then it may be misleading to choose the model with
the lowest DIC value.

Bayesian Model Averaging

As noted earlier, a key characteristic that sepa-
rates Bayesian statistical inference from frequentist
statistical inference is its focus on characterizing
uncertainty. Up to this point, we have concentrated
on uncertainty in model parameters, addressing that
uncertainty through the specification of a prior dis-
tribution on the model parameters. In a related, but
perhaps more general fashion, the selection of a par-
ticular model from a universe of possible models can
also be characterized as a problem of uncertainty.
This problem was succinctly stated by Hoeting,
Madigan, Raftery, and Volinsky (1999), who write:

“Standard statistical practice ignores model ‘
uncertainty. Data analysts typically select a model
from some class of models and then proceed as if the
selected model had generated the data. This approach
ignores the uncertainty in model selection, leading to
over-confident inferences and decisions that are more

risky than one thinks they are.”(p. 382)
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An interesting approach to addressing the problem
of model uncertainty lies in the method of Bayesian
model averaging (BMA).

To begin, consider once again a parameter of
interest 6 (which could be vector valued) and con-
siderasetof competingmodels My, £ = 1,2,..., K
that are not necessarily nested. The posterior distri-
bution of @ given data y can be written as

K

2O = >_pOIMp(Mily),  (45)
k=1

where p(M}|y) is the posterior probability of model
My, written as

 pOIMp(M) "
K 4 .
YK poIM)pM)

p(Mply) =
(46)

~ In words, Equation 46 indicates that one can
obtain the posterior probability of a model by mul-
tiplying the likelihood of the data given the model,
times the prior probability placed on the model. The
prior probability p(M}) can be different for different
models. Note that denominator in Equation 46 sim-
ply ensures that the probability sums to one. Note
also that the term p(y|M}) can be expressed as an
integrated likelihood

POIMy) = fP(yIGk>Mk)p(9klM/e)d9k, (47)

over the parameters of interest, and where p(6|M})
is the prior density of 6. Thus, BMA provides
an approach for combining models specified by
researchers or perhaps elicited by key stakehold-
ers. The advantage of BMA has been discussed in
Madigan and Raftery (1994), who showed that
BMA provides better predictive performance than
that of a single model.

As pointed out by Hoeting et al. (1999), BMA
is difficult to implement. In particular, they have
noted that that the number of terms in Equation 45
can be quite large, the corresponding integrals are
hard to compute (though possibly less so with the
advent of MCMC), specification of p(M}) may not
be straightforward, and choosing the class of mod-
els to average over is also challenging. The problem
of reducing the overall number of models that one
could incorporate in the summation of Equation 45
has lead to interesting solutions based on the notion
of Occam’s window (Madigan & Raftery, 1994) or
the “leaps-and-bounds” algorithm (Volinsky, Madi-
gan, Raftery, & Kronmal, 1997), discussions of
which are beyond the scope of this chapter.
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Bayesian Computation

As stated in the introduction, the key reason
for the increased popularity of Bayesian methods
in the social and behavioral sciences has been the
advent of freely available software programs for
Bayesian estimation of the parameters of a model,

The most common estimation algorithm is based .
on MCMC sampling. A number of very impor-

tant papers and books have been written about
MCMC sampling (see, e.g., Gilks, Richardson, &
Spiegelhalter, 1996). The general idea is that instead
of attempting to analytically solve a complex inte-
gral problem, the MCMC approach instead draws
specially constructed samples from the posterior dis-
tribution p(0]y) of the model parameters. In the
interest of space, we will concentrate on one com-
mon algorithm for MCMC sampling, referred to as
Gibbs Sampling (Geman & Geman, 1984). More
general treatments of MCMC can be found in
Bolstad (2009); Casella and Robert (2003); Gilks
et al. (1996).

Gibbs Sampling

The formal algorithm can be specified as fol-
lows. Let @ be a vector of model parameters with
clements @ = {61,...,6;}. The elements of 6
could be the parameters of a regression model,
structural equation model, and so forth. Note that
information regarding 6 is contained in the prior dis-
tribution p(8). A number of algorithms and software
programs are available to conduct MCMC sam-
pling. Following the description given in Gilks et
al. (1996), the Gibbs sampler begins with an initial
set of starting values for the parameters, denoted as
0O = (91(0), cees Gq(o)). Given this starting point,
the Gibbs sampler generates 00 from 6¢1 as
follows:

Lsample 60 ~ p@1165 77,657,007 D,y)

2. sample 057 ~ p(@alo(?, 657,07V, )

09,y

; ©
g. sample Gq(’") NP(94|91(5),9; seensby

Then, a sequence of dependent vectors are formed:

oM = o, ... .0
6@ = (62,...6{)

6O = (6,...0).

This sequence exhibits the so-called Markov prop-
erty insofar as 0® is conditionally independent of
{91(0), e 94(5_2)} given 607D, Under some general
conditions, the sampling distribution resulting from
this sequence will converge to the target distribution
as s — 00. See Gilks et al. (1996) for additional
details on the properties of MCMC.

In setting up the Gibbs sampler, a decision must
be-made regarding the number of Markov chains to
be generated, as well as the number of iterations of
the sampler. With regard to the number of chains to
be generated, itis not uncommon to specify multiple
chains. Each chain samples from another location of
the posterior distribution based on purposefully dis-
persed starting values. With multiple chains, it may
be the case that fewer iterations are required, partic-
ularly if there is evidence for the chains converging
to the same posterior mean for each parameter. In
some cases, the same result can be obtained from one
chain, although often requiring a considerably larger
number of iterations. Once the chain has stabilized,
the iterations prior to the stabilization (referred to
as the burn-in phase) are discarded. Summary statis-
tics, including the posterior mean, mode, standard
deviation, and credible intervals, are calculated on
the post-burn-in iterations. Also, convergence diag-
nostics (discussed next) are obtained on the entire
chain or on poét—burn-in iterations.

Convergence Diagnostics

Assessing the convergence of parameters within
MCMC estimation is a difficult task that has been
receiving attention in the literature for many years
(see e.g., Mengersen, Robery, & Guihenneuc-
Jouyax, 1999; Sinharay, 2004). The difficulty of
assessing convergence stems from the very nature of
MCMC in that the MCMC algorithm is designed
to converge in distribution rather than to a point
estimate. Because there is not a single adequate
assessment of convergence for this situation, it is
common to inspect several different diagnostics
that examine varying aspects of convergence condi-
tions. Perhaps the most common form of assessing
MCMC convergence is to examine the convergence
(also called history) plots produced for a chain. Typ-
ically, a parameter will appear to converge if the
sample estimates form a tight horizontal band across
this history plot. However, using this method as an
assessment for convergence is rather crude because
merely viewing a tight plot does not indicate conver-
gence was actually obtained. As a result, this method
is more likely to be an indicator of non-convergence

(Mengersen et al., 1999). For example, if two chains
for the same parameter are sampling from differ-
ent areas of the target distribution then there is
evidence of non-convergence. Likewise, if a plot
shows substantial fluctuation or jumps in the chain,
it is likely the parameter has not reached conver-
gence. However, because merely viewing history
plots may not be sufficient in determining conver-
gence (or non-convergence), it is also common to
reference additional diagnostics. Although this list
is not exhaustive, we focus on several of the most
commonly used diagnostics for single-chain situa-
tions. All of these diagnostics are available through
loading the convergence diagnostic and output anal-
ysis (CODA) (Best, Cowles, & Vines, 1996) files
(produced by programs such as WinBUGS) into the
Bayesian output analysis (BOA) program (Smith,
2005) interface for R (R Development Core Team,
2008a).

The Geweke convergence diagnostic (Geweke,
1992)isused withasingle chain todeterminewhether
the first part of a chain differs significantly from the
last part'of a chain. The motivation for this diagnos-
tic is rooted in the dependent nature of an MCMC
chain. Specifically, because samples in a chain are not
independently and identically distributed, conver-
gence can be difficult to assess because of the inherent
dependence between adjacent samples. Stemming
from this dilemma, Geweke constructed a diagnostic
that aimed at assessing two independent sections of
the chain. Bayesian output analysis allows the user
to set the proportion of iterations to be assessed at
the beginning and the end of the chain. The default
for the program mimics the standard suggested by
Geweke (1992), which is to compare the first 10% of
the chainand the last 50% of the chain. Although the
user can modify this default, it is important to note
that there should be a sufficient number of iterations
between the two samples to ensure the means for the
twosamplesareindependent. Thismethod computes
a z-statistic where the difference in the two sample
means is divided by the asymprtotic standard error of
their difference. A z-statistic falling in the extreme
tail of a standard normal distribution suggests that
the sample from the beginning of the chain has not
yet converged (Smith, 2005). Bayesian output anal-
ysis produces an observed z-statistic and two-sided

p-value. It is common to conclude that there is evi-
dence against convergence with a p-value less than
0.05.

The Heidelberger and Welch convergence diag-
nostic (Heidelberger & Welch, 1983) isa stationarity
test that determines whether the last part of a Markov
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chain has stabilized. This test uses the Cramer-von-
Mises statistic to assess evidence of non-stationarity.
If there is evidence of non-stationarity, then the first
10% of the iterations will be discarded and the test
will be repeated either until the chain passes the test
or more than 50% of the iterations are discarded. If
the latter situation occurs, then it suffices to con-
clude there was not a sufficiently long stationary
portion of the chain to properly assess convergence
(Heidelberger 8 Welch, 1983). The results presented
in BOA report the number of iterations that were
retained as well as the Cramer-von-Mises statistic.
Each parameterisgivenastatusofhavingeither passed
the test or not passed the test based on the Cramer-
von-Mises statistic. If a parameter does not pass this
test, then this is an indication that the chain needs to
run longer before achieving convergence. A second
stage of this diagnostic examines the portion of the
iterations that pass the stationarity test for accuracy.
Specifically, if the half-width of the estimate confi-
dence interval is less than a pre-set fraction of the
mean, then the test implies the mean was estimated
with sufficient accuracy. If a parameter fails under
this diagnostic stage (indicating low estimate accu-
racy), then it may be necessary for alonger run of the
MCMC sampler (Smith, 2005).

The Raftery and Lewis convergence diagnostic
(Raftery & Lewis, 1992) was originally developed
for Gibbs sampling and is used to help determine
three of the main features of MCMC: the burn-
in length, the total number of iterations, and the
thinning interval (described below). A process is car-
ried out that identifies this information for all of the
model parameters being estimated. This diagnostic
is specified for a particular quantile of interest with
a set degree of accuracy within the BOA program.
Once the quantile of interest and accuracy are set,
the Raftery and Lewis diagnostic will produce the
number of iterations needed for a burn-in and a
range of necessary post-burn-in iterations for a par-
ticular parameter to converge. For each of these, a
lower-bound value is produced that represents the
minimum number of iterations (burn-in or post-
burn-in) needed to estimate the specified quantile
using independent samples. Note, however, that the
minimum value recommended for the burn-in phase
can be optimistic and larger values are often required
for this phase (Mengersen et al., 1999).

Finally, information is also provided about the
thinninginterval that should be used for each param-
eter. Thinning is a process of sampling every s*
sequenceofthechain for purposesofsummarizingthe
posterior distribution. Thinning is often used when
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autocorrelations are high, indicating that consecy-
tive draws are dependent. To reach independence
between samples, it is common to discard a num-
ber of successive estimates between draws that are
used for estimation. Thinning involves comparing
first-order and second-order Markov chains together
for several different thinning intervals. Comparison
of first- and second-order Markov chains is accom-
plished through computing G2, a likelihood-ratio
test statistic between the Markov models (Raftery &
Lewis, 1996). After computing G2, the BIC can then
be computed to compare the models directly (Raftery
& Lewis, 1996). The most appropriate thinning
interval is chosen by adopting the smallest thinning
value produced where the first-order Markov chain
fits better than the second-order chain.

Although the default in the BOA program is
to estimate the 0.025 quantile, the 0.5 quantile is
often of more interest in determining the number
of iterations needed for convergence because inter-
est typically focuses on the central tendency of the
distribution. It is important to note that using this
diagnostic is often an iterative process in that the
results from an initial chain may indicate that a
longer chain is needed to obtain parameter con-
vergence. A word of caution is that over dispersed
starting values can contribute to the Raftery and
Lewis diagnostic requesting a larger number of burn-
in and post-burn-in iterations. On a related note,
Raftery and Lewis (1996) recommend that the maxi-
mum number of burn-in and post-burn-in iterations
produced from the diagnostic be used in the final
analysis. However, this may not always be a practical
venture when models are complex (e.g., longitudinal
mixture models) or starting values are purposefully
over dispersed.

Three Empirical Examples

In this section, we provide three simple examples
of theapplication of Bayesian statistical inference: (1)
Bayesian multiple regression analysis, (2) Bayesian
multilevel modeling, and (3) Bayesian confirmatory
factor analysis. The intent of this section is to present
threestandalone examplesthat, in part, illustratehow
to interpret and report analyses produced through a
Bayesian framework. It is not the intention of this
section to compare results to those from a frequentist-
based analysis. In fact, it is expected in analyses with
large samples and non-informative priors that the
Bayesian results would be close to those obtained
from a frequentist analysis. Differences between the
two approaches might appear in comparing credible

intervals to confidence intervals, but the reasons for
conductingaBayesiananalysisliein the philosophical
differences underlying the two approaches, which
we discuss in the Conclusions and Future Directions
section.

Bayesian Multiple Regression Analysis

For this example, we use an unweighted sample of
550kindergartners from the Early Childhood Longi-
tudinal Study-Kindergarten Class of 1998 (NCES,
2001). Item response theory was used to derive scale
scores for a math assessment given in the fall of
kindergarten. These scores are used asthe depen-
dent variable in this analysis. There are two sets of
predictorsincluded in this model. The first set of pre-
dictors is comprised of three items that the teacher
answered for each student regarding certain social
and behavioral issues within the classroom. These
three items inquired about each student’s approach
to learning, self-control, and interpersonal skills.
The second set of predictors included three simi-
lar items that the parent answered regarding their
child in the home environment. These three items
were approaches to learning, self-control, and social
interaction. This model includes all six teacher and
parent items as predictors of math achievement. For
the purposes of this example, this model was com-
puted through the R environment (R Development
Core Team, 2008b) using the MCMCreg function
within the MCMCpack package to carry out the anal-
ysis (Martin, Quinn, & Park, 2010). Note, however,
that this model can be computed both in other pack-
ageswithin R and also in alternative programs such as
WinBUGS (Lunn, Thomas, Best, & Spiegelhalter,
2000) and Mplus (Muthén & Muthén, 2010). All
of the model parameters were given non-informative
prior distributions.

PARAMETER CONVERGENCE

The results obtained through MCMCpack were
read into the CODA package (Best et al., 1996) that
provides many different convergence diagnostics dis-
cussed earlier. The Geweke convergence diagnostic
was computed using the default CODA proportions
of 0.1 for the beginning of the chain and 0.5 for
the end of the chain. None of the parameters pro-
duced significant z-scores, indicating there was no
evidence against convergence. The Heidelberger and
Welch convergence diagnostic indicated that all of
the parameters passed the stationarity and half-width
tests. Finally, the Raftery and Lewis diagnostic was
computed with the following settings: quantile = 0.5,

accuracy = 0.05, and probability = 0.95. Resultsindi-

cated that the burn-in should consist of at least ewo
iterations, the total number of iterations should be at
least 3,897, and that no thinning interval was neces-
sary. Amore conservativeanalysiswith 1,000 burn-in
iterations and 10,000 post-burn-in iterations was
conducted with little computational cost. The results
of these diagnostics indicated that the parameters in
this model appeared to properly converge.

MODEL INTERPRETATION

Estimates for the final unstandardized regression
analysis can be found in Table 20.1. The means and
standard deviations of the posterior distributions
are provided for each model parameter. The Monte
Carlo (MC) error is also included in this table.
This estimate is of the MC standard error of the
mean of the posterior distribution. Finally, the 95%
credible interval is also provided for each parame-
ter. As an example, the unstandardized regression
weight for the teacher-reported assessment of a stu-
dent’s approach to learning was 3.81 with a standard
deviation of 0.59. The 95% credible interval for
this parameter ranges from a lower bound of 2.65
to an upper bound of 4.98. The interpretation of
this interval differs from the interpretation of a
frequentist confidence interval in that the credible
interval indicates there is a 0.95 probability that the
parameter falls in this range of values.

Figure 20.1 presents convergence plotsand poste-
rior density plots for the three teacher predictors and
the three parent predictors. The convergence plots
exhibit a relatively tight, horizontal band for the
predictors, indicating that there was no sign of non-
convergence. Non-convergence is typically identi-
fied by convergence bands that bounce around in an
unstable fashion, rather than forming a tight hori-
zontal band. The posterior densities in Figure 20.1
approximate a normal distribution, which is another
indication of parameter convergence. If the density
plots exhibit non-normal, or lumpy, distributions,
this can be a sign that the MCMC chain has not
converged propetly to the posterior distribution.

MODEL COMPARISON

For the purposes of illustrating Bayesian model
comparison, two additional regression models have
been estimated using the same dependent variable of
math achievement but a restricted set of predictors.
The first model includes only the teacher-related pre-
dictors, and results from this analysis can be found in
the middle section of Table 20.1. The second model
includes the parent-related predictors and results can
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Table 20.1. Bayesian Regression Estimates from R: ECLS-K Database

Node EAP SD MCerror 95% credible 1nterval
Full model
Intercept —4.00 279 275E-2 —9.46, 1.57
Teacherl: Approaches to learning 3.81 059 5.99E-3 2.65,4.98
Teacher2: Self-control 041 0.97 ‘ 8.39E-3 —1.47,2.32
Teacher3: Interpersonal skills 0.33 0.95 9.22E-3 —1.57,2.18
Parentl: Approaches to learning 2.15 077 7.08E-3 0.63, 3.66
Parent2: Self-control 2.00 0.62 5.37E-3 0.78, 3.23
Parent3: Social interaction 0.20 0.67 G6.57E-3 —1.14, 1.51
Math achievement variance 58.52 3.54 3.64E-2 51.92, 65.79
Restricted model: Teacher-related items
Intercept 5.87 176 1.85E-2 2.49,9.42
Teacher1: Approaches to learning 4.38 0.59 5.06E-3 3.21,5.53
Teacher2: Self-control 0.16 0.97 7.823E-3 — 1\.77, 2.03
Teacher3: Interpersonal skills 1.04 095 8.14E-3 —0.82,2.93
Math achievement vatiance 60.90 370 3.57E-2 54.03, 68.57
Restricted model: Parent-related items
Intercept 1.65 275 2.89E-2 —3.64,7.18
Parentl: Approaches to learning 3.37 0.81 G6.80E-3 1.76,4.93
Parent2: Self-control 294 0.64 5.57E-3 1.65,4.17
Parent3: Social interaction 0.62 071 7.37E-3 —0.77,2.01
Math achievement variance 65.95 4.01 3.86E-2 58.52, 74.26

Note: Note that these are all unstandardized weights. However, standardized.weights are also available
through this program. EAP = expected 2 posteriori. SD = standard deviation; MC error = Monte Carlo error.

be found in the bottom portion of Table 20.1. Both
of these models will be used as a comparison to the
original full model containing all of the predictors.

As discussed earlier, the Bayes factor can be used
asa tool to quantify the odds of the data favoring one
model over another. For the first comparison, the
full model with all six predictors will be compared
to the model only containing the teacher-related
predictors. Using Equation 40, the Bayes factor
for this model comparison was computed through
the BayesFactor function in MCMCpack available
through R.

The result comparing the full model to the model
containing only the teacher-related items yielded
a Bayes factor value of 65.00. According to the
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criteria presented earlier, this indicates strong evi-
dence against the restricted model containing only
the teacher-related items.

In a similar fashion, the second comparison

involves the full model and the model only contain- -

ing the parent- related predictors. The Bayes factor
computed for this comparison was 1.56E+11, indi-
cating very strong evidence against the restricted
model containing only the parent-related items.
Finally, by comparing the two restricted models to

one another, a Bayes factor value between 0 and 1.0 -

(4.17E-10) was produced. Values less than 0 indicate

that the model in the denominator (M) of the Bayes

factor is favored over the model in the numerator

(My). In this case, there was very strong evidence
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Figure 20.1 Bayesian regression: convergence and posterior plots for all regression model predictors.

against the restricted model containing only the
teacher-related items.

[t is important to point out how this example dif-
fers from a frequentist approach to the problem. In
particular, the Bayes factor is providing information
about the magnitude of support in the data favor-
ing one hypothesis over the other. This is in stark
contrast to the frequentist view of acceptance versus
rejection of a hypothesis given the data.

BAYESIAN MODEL AVERAGING

The full regression miodel with all parent and
teacher predictor variables is used here to demon-
strate Bayesian modeling averaging via the BMA
package (Raftery, Hoeting, Volinsky, Painter, &
Yeung, 2009) in R (R Development Core Team,
2008b).° The BMA package in R automatically
produces the top five selected models and these
are displayed in Table 20.2. These models are
selected based on posterior model probability val-
ues. For each variable in the model, the posterior effect

probability POST PROB) gives the effect size of the

variable in the metric of posterior probability and
is used to draw inferences about the importance of
each variable. Specifically, the posterior effect proba-
bility is the probability that the regression coefficient
is not zero, taking into account model uncertainty.
The Bayesian model averaged coefficients (AVG
COEF) are the weighted average of coefficients asso-
ciated with the specific variable across the top five
models, weighted by each model’s posterior model
probability (PMP). For example, the weighed model
average coefficient for TEACHERI is 4.19, with
a weighted model averaged standard deviation of
0.53. The posterior effect probability of this coef-
ficient is 1.0 and thus implies that its averaged
posterior distribution has 0% of its mass at 0. By
contrast, TEACHER?2, has a weighted model aver-
aged coefficient of 0.04 with standard deviation of
0.21. The averaged posterior distribution for this
coefficient has 94% of its mass at 0, or, in other
words, the probability that the TEACHER2 coef-
ficient is not 0 is 0.06. As stressed by Hoeting et
al. (1999), these parameter estimates and standard
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Table 20.2. Bayesian Model Averaging Results for Five Multiple-Regression Models

Node Post  Avg ,
prob coef SD Modell Model 2 Model3 Model 4 Model 5

Full model

Intercept ~ 1.00 —2.68 3.00 —3.14 228  —4.02  —3.80 0.82

Teacherl ~ 1.00 - 4;19 0.53 4.19 4.56 3.87 3.89 4.48

Teacher2  0.06  0.04 0.22 0.67

Teacher3  0.06  0.04 0.21 0.65

Parentl 0.93 221 0.90 2.35 2.33 2.28 2.71

Parent2 095 202 076 211 2.41 2.06 2.04

Parent3 0.00  0.00 0.00

R? 0.20 0.18 0.20 0.20 0.18

BIC —104.39 —99.47 —99.29 —99.25 . —98.91

PMP 0.77 0.07 0.06 0.06 0.05

Note: Post prob = the posterior probability for each variable in the averaged model; Avg Coef = the average
unstandardized coefficient for all variables in the model; SD = the standard deviation for the averaged coefﬁclen‘ts;
R? = percent of variance accounted for by each model; BIC = Bayesian information criteria; PMP = posterior

model probability for each of the five models.

deviations account for model uncertainty. Finally,
the model with highest PMP is Model 1 with a prob-
ability of 0.77. This model also produced the lowest
BIC value, but it is interesting to note that R? val-
ues yield inconsistent findings. For future predictive
studies, one would use the coefficients shown under
AVG COEEF, as these have been shown to provide
the best predictive performance (see Hoeting et al.,
1999). The R syntax for this example is given in
Appendix A.

Bayesian Hierarchical Linear Modeling

This example of a two-level hierarchical linear
model uses a sample of 110 kindergartners from 39
schools from the ECLS—K database (NCES, 2001).
The same math assessment measure from the mul-
tiple regression example is used as an outcome here.
There are two predictors at Level 1 in this model.
The first is a measure assessing the parent’s percep-
tion of their child’s approach to learning. The second
predictor is the parent’s assessment of their child’s
self:control. This example was computed through
WinBUGS (Lunn et al., 2000); however, there are
several packages within the R environment that will
estimate this type of model. The WinBUGS syntax
is given in Appendix B and all model parameter were
given non-informative priors.
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PARAMETER CONVERGENCE

An initial model was computed with no burn-in-

samples and 10,000 total iterations to assess pre-

. liminary parameter convergence. This model took

about 1 second to compute. The Geweke diagnostic
and the Heidelberger and Welch diagnostic would
not compute as a result of substantial divergence
within the chains. The Raftery and Lewis diagnos-
tic was computed with the following values: quantile
= 0.5, accuracy = 0.05, and probability = 0.95.
Results indicated that the longest chain should run
for up to 304,168 post-burn-in iteration for the 0.5
quantile, with a thinning interval up to 193 and a
burn-in of 2,509. A final model took these recom-
mendations into consideration and was computed
with 20,000 burn-in iterations, 255,000 post-burn-
in iterations, and no thinning interval. The decision

to not include a thinning interval was based on the -

auto-correlation plots in the initial model as well as
the fact that such a large number of post-burn-in
iterations were being used for the final model. The
Geweke convergence diagnostic for this final model

indicated that none of the parameters produced sig-

nificant z-scores. Likewise, the Hiedelberger and
Welch diagnostic indicated that all of the param-
eters passed the stationarity and half-width tests.
Based on these diagnostics, all of the parameters 12

this model appeared to converge properly. Despite
the large number of iterations, this model took less
than 2 minutes to run.

MODEL INTERPRETATION

Estimates for the final hierarchical linear model
are presented in Table 20.3. The means and stan-
dard deviations of the posterior distributions are
provided for each parameter. Likewise, the MC error
and the 95% credible interval are also provided.
The fixed effects for this model are presented in
the table first. Results indicated that the intercept
for this model was -2.61, representing the expected
scaled-math score for a student corresponding to
parent-perceptions for the predictors coded as 0.
Likewise, the 95% credible interval ranged from
-4.12 to -1.10, indicating that there is 2 0.95 proba-
bility the true parameter value falls in this range. The
slope corresponding to the parent-perception of the
child’s approach to learning was 4.85 and the slope
for the parent-perception of the child’s self-control
was 2.66. Table 20.3 also presents the correlations
between the fixed effects. The two slope parameters
have a larger correlation, with an estimate of 0.47.
The intercept had lower but comparable correlations
between the respective slope parameters.

Figure 20.2 presents convergence plots, posterior
density plots, and auto-correlation plots for all three
fixed effects. The convergence plots exhibit a rela-
tively tight, horizontal band for the intercept and
the two slopes. The posterior densities approximate
a normal distribution, with the intercept exhibiting
more variability in the density compared to the
two slopes. Finally, the auto-correlation plots all
show diminishing dependence within the chain. If

auto-correlations were high, this would indicate that
the starting values likely had a large impact on the
location of the chain. Lower auto-correlations are
desirable because the location of the chain should
not depend on the starting values but, rather,
should be determined by the posterior distribution.
Although not presented here, the other parameters
in the model showed similar results.

Bayesian Confirmatory Factor Analysis

The data for the Bayesian confirmatory factor
analysis example come from the responses of a sam-
ple of 3,500 public school 10th grade students to
survey items in the National Educational Longitu-
dinal Study (NCES, 1988). Students were asked to
respond to questions assessing their perceptions of
the climate of the school. Questions were placed on
a 4-point Likert scale ranging from strongly agree to
strongly disagree. A prior exploratory factor analysis
using principal axis factoring with promax rotation
revealed two correlated factors. The item and factor
definitions are given in Table 20.4. We use the two-
factor solution for the Bayesian CFA example. This
model was estimated using non-informative priors
on the model parameters through WinBUGS; the

syntax for this example is given in Appendix C.

PARAMETER CONVERGENCE

An initial model was computed with no burn-in
samples and 5,000 total iterations to assess pre-
liminary parameter convergence. This model took
about 8 minutes to compute. The Geweke conver-
gence diagnostic was computed using the default
BOA proportions of 0.1 for the beginning of the
chain and 0.5 for the end of the chain. None

Table 20.3. WinBugs HLM Estimates: ECLSK Data

Node EAP SD MCerror 95% credible interval
Fixed effects \

Intercept —2.61 0.78 3.43E-2 —4.12,—-1.10
Approaches to learning 485 040 1.72E-2 4.10, 5.63
Self-control 2.66 0.40 1.71E-2 1.88, 3.53
Fixed effects: Correlations

Intercept/Learning 0.23 0.15 3 1.63E-3 —0.07, 0.51
Intercept/Self-control 0.22 0.15 1.68E-3 —0.07, 0.51
Learning/Self-control 0.47 2.39E-3 0.17,0.72

Note: EAP = expected z posteriors; SD = standard deviation; MC error = Monte Carlo error.
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Figure 20.2 HLM: convergence, posterior densities, and auto-correlations for fixed effects.

of the parameters produced significant z-scores,
indicating there was no evidence against conver-
gence based on the Geweke diagnostic. Likewise,
the Heidelberger and Welch convergence diagnostic
yielded results indicating that all of the parame-
ters passed the stationarity and half-width tests. The
Raftery and Lewis diagnostic was computed with the
following values: quantile = 0.5, -accuracy = 0.05,
and probability =0.95. Results indicated that the
longest chain should run for up to 5,555 post-burn-
in iterations for the 0.5 quantile with a thinning
interval up to 11 and a burn-in of 44 iterations
to converge. A final model was computed based
on these recommendations with a burn-in phase
of 1,000 and 5,000 post-burn-in iterations. Upon
inspection of auto-correlation plots for the initial
model, it was deemed that no thinning interval was
necessary for the final analysis. Based on the diagnos-
tics, all of the parameters in this model appeared to
converge properly. This model took approximately
10 minutes to run. The length of time it took to
run these models probably resulted from the large
sample size.

MODEL INTERPRETATION

Table 20.4 presents estimates for the final CFA
model. The means and standard deviations of the
posterior distributions are provided for each param-
eter. The MC error is also included in this table as
well as the 95% credible interval for each parameter.

The first factor consisted of positive perceptions of

the school climate, whereas the second factor con-
sisted of negative perceptions of the school climate.
Note that the first item on each factor was fixed to
have a loading of 1.00 to set the metric of that factor.
However, the flexibility of modeling in a Bayesian
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framework will allow for any method of scale set-
ting. The factor assessing positive perceptions of
school climate measures had high (unstandardized)
loadings ranging from 0.94 to 1.11. The factor mea-
‘suring negative perceptions of school climate had _
slightly lower loadings overall, ranging from 0.80 to
0.97. Notice that all of the 95% credibility intervals
are relatively tight for all of the items. For example,
the interval for the item measuring the level students ‘

get along ranged from 0.95 to 1.03. This indicates. .. -

that there is a 0.95 probability that the true load-
ing for this item is in this range. Table 20.4 also
includes estimates for factor precisions (inverse of |
the variance), error term variances, and the residual
variance/precision '

Figure 20.3 presents convergence plots, poste-

rior density plots, and auto-correlation plots for

two of the factor loadings and the correspond-
ing error variances. The convergence plots exhibit
a tight, horizontal band for both of the items
presented. In conjunction with the convergence
diagnostics presented above, this tight band indi-_
cates the parameters likely converged properly. The

posterior probability densities are approximatinga -

normal distribution, and the auto-correlations are.
very low, indicating sample independence within the
chain. Although not shown here, the other param-
eters included in this model also exhibited proper
convergence and low auto-correlations.

Conclusions and Future Directions

This chapter provided a very general overview .

of Bayesian statistical methods, including elements
of Bayesian probability theory, inference, hypoth- -

esis testing, and model comparison. We provided .

Table 20.4. WinBugs CFA Estimates: NELS88 Survey

Node

EAP SD MCerror 95% credible interval

Loadings: Positive

Students get along 1.00

There is schddl spirit 0.99 0.03 7.05E-4 0.95, 1.03
Discipline is fair 099 0.02 7.02E-4 0.95, 1.03
[ have friends of other racial groups ~ 0.94 0.02  7.17E-4 0.90, 0.98
Teaching is good 108 002 7.43E4 1.04, 1.12
Teachers are interested in students 1.11 0.02 7.40E-4 1.07, 1.15
Teachers praise students 1.02 0.02 7.50E-4 0.98, 1.06
Teachers listen to students 1.04 0.02 7.53E-4 1.01, 1.08
Loadings: Negative

Students disrupt learning 1.00

Teachers putdown students 0.84 0.02 8.94E-4 0.80, 0.89
Teachers are strict 0.86 0.02 9.38E-4 0.81, 0.91
Students putdown each other 0.87 0.02 9.91E-4 0.82,0.92
School is not safe 0.80 0.02 8.79E-4 0.75,0.84
Disruptions impede my learning 093 0.02 9.33E-4 0.89,0.98
Students get away with bad behavior  0.97 0.02  9.99E-4 0.92, 1.02
Factor Precisions

Factor 1 Precision 0.59 0.02 8.22E4 0.55, 0.63
Factor 2 Precision 0.61 0.03 1.22E-3 0.56, 0.66 -
Factor Covariance Precision 0.43 0.02 5.48F-4 0.40, 0.47 '
Error Variances

Students get along 3.66 0.11 233E-3 3.45, 3.87
There is school spirit 1.81 0.05 7.36E-4 1.72,1.90
Discipline is fair 1.61 0.04 8.25E-4 1.52, 1.69
I have friends of other racial groups  1.60 0.04 6.58E-4 1.52, 1.68
Teaching is good 2.58 0.07 1.29E-3 2.44,2.72
Teachers are interested in students 2.10 0.06 1.09E-3 1.99,2.22
Teachers praise students 1.99 0.05 1.02E-3 1.88, 2.09
Teachers listen to students 2.35 0.07 1.28E-3 2.23,2.48
Students distupt learning 1.86 0.05 1.23E-3 1.76, 1.97
Teachers putdown students 2.02 0.06 1.11E-3 1.91,2.14
Teachers are strict 1.37 0.04 6.55E-4 1.30, 1.44
Students putdown each other 1.92 0.05 1.19E-3 1.82,2.03
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Table 20.4. (Continued)

Node FEAP SD MCerror 95% credible interval
School is not safe 1.92 0.05 9.15E4 1.83, 2.03
Disruptions impede my learning 1.56 0.04 7.61E-4 1.48, 1.64
Students get away with bad behavior  1.61 0.04 9.30E-4 1.53, 1.70
Residual Variance and Precision

Variance 224 076 9.42E-3 1.01, 3.96
Precision 0.51 0.20 2.47E-3 0.25, 1.00

Nate: Note that these are unstandardized factor loadings. However, the program can be specified to produce
standardized loadings. EAP = Expected z posteriori. SD = standard deviation; MC error = Monte Carlo error.
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Figure 20.3 CFA: convergence, posterior densities, and auto-correlations for select parameters.

very simple examples of Bayesian inference to mul-
tiple regression, multilevel modeling, and confir-
matory factory analysis to motivate the Bayesian
approach. It should be pointed out, however, that
with the advent of simulation methods for estimat-
ing model parameters, virtually all of the common
statistical models used in the social and behav-
joral sciences can be estimated from a Bayesian
perspective.

The broad range of models that can be estimated
via the Bayesian perspective comes with a price.
First, although the MCMC sampling conducted
for the examples in this paper took very little time,
Bayesian inference via MCMC sampling can take a
very long time to run — particularly when compared
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with maximum likelihood based alternative algo-

rithms such as the expectation-maximization (EM)
algorithm (Dempster, Laird, & Rubin, 1977). The
issue of extensive computational time is particu-
larly problematic when estimating models involving
finite mixture distributions. Second, there does not
currently exist simple “pull-down menu” function-
ality for Bayesian-oriented software programs such
as WinBUGS or the packages within R. Although it
is expected that such functionality will be available
in the future, for now, there is a great deal of start-
up learning that is required to properly specify and
estimate Bayesian models.

Perhaps a more important consideration when
embarking on the use of Bayesian inference are the

Y.

epistemological differences between the Bayesian
and frequentist approaches for model building and
model selection. As noted earlier, the key epis-
temological differences between the Bayesian and
frequentist perspective include (1) the view that
parameters are random and unknown versus fixed
and unknown (2) accepting the validity of the
subjective belief framework of probability, that is,
quantifying the degree of belief about model param-
eters in the form of the specification of the prior
distribution, and updating that beliefin the presence
of data; and (3) a shift away from the Fishe-
rian or Neyman and Pearson schools of hypothesis
testing' and toward an approach based on model
selection and posterior predictive accuracy. Thus,
although the Bayesian and frequentist results look
similar under certain conditions (e.g., large sam-
ple sizes and diffuse priors), it does not suggest
that they are the same or that they are providing
necessarily comparable interpretations. These dif-
ferences in outlook between the Bayesian approach
and the frequentist approach imply that MCMC
sampling should not be considered “just another
estimator”—that is, no different than, for example,

Appendix A: Glossary

say maximum likelihood or weighted least-squares.
Rather, if the Bayesian perspective is an appealing
approach to data modeling in the social and behav-
ioral sciences, then due consideration must be given
as to whether one is comfortable with the epis-
temological shift that comes from adopting this
approach.

We see three important future directions for
Bayesian inference in the social and behavioral sci-
ences. First, from a purely practical point of view, it

will be difficult to convince social and behavioral sci--

ence researchers to adopt Bayesian methods unless
computational algorithms become both easier to use
and considerably faster. Second, it will be impor-
tant to introduce students to Bayesian methods
much earlier in their statistical training and to artic-
ulate the epistemological differences between the
Bayesian and frequentist approaches so that students
understand precisely the choices they are making,
Finally, it will take a slow but steady paradigm
shift in the practice of social and behavioral science
to move away from conventional hypothesis test-
ing as currently employed and toward the Bayesian
perspective.

Term Definition

Bayes factor

marginal likelihoods.

A quantity indicating the odds that the data favor one hypothesis over
another. With equal prior odds, the Bayes factor is the ratio of the

Bayes’ Theorem

A theorem originated by the Reverend Thomas Bayes’ and popularized by
Pierre-Simon Laplace relating conditional probability to its inverse form.

BIC Bayesian information criterion. A statistic used for model selection based
on the Bayes factor but not requiring prior distributions.

BMA Bayesian model averaging. A method to account for model uncertainty
when specifying and comparing a number of different models.

Burn-in

In MCMG, the iterations prior to the stabilization of the chain.

Conditional probability The probability of an event given the occurrence or observation of

another event.

Credible interval Also referred to as the posterior probability interval. An interval of the
posterior distribution used for interval estimation in Bayesian statistics.
DIC Deviance information criterion. A model selection criterion used to select a

model with the best sample predictive performance.
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Appendix A: Glossary (Continued)

Term Definition

EAP Expected a posteriori estimate. In Bayesian inference, the EAP corresponds
to the mean of the posterior distribution.

EM algorithm An iterative algorithm for finding maximum likelihood estimates of
model parameters.

Exchangeability A sequence of random variables such that future samples behave like

earlier samples, meaning that any order of a finite number of samples is

equally likely.

Frequentist paradigm

A statistical paradigm based on the view of probability as the limiting
quantity in long-run frequency. Specifically that any given event can be
considered as one of an infinite sequence of possible repetitions of the

same event.

HPD Highest posterior density. An interval in which every point inside the

’ interval has a higher probability than any point outside the interval.

Hyperparameters The parameters of the prior distribution.

Hyperprior distribution The prior distribution on the hyperparameters.

Jeffreys’ prior A non-informative prior distribution that is proportional to the square
root of the determinant of the Fisher information matrix.

Likelihood A statistical function of the parameters of a model, assumed to have
generated the observed data.

MAP Maximum  posteriori estimate. The mode of the posterior distribution.

MCMC Markov chain Monte Carlo. In Bayesian statistics, a family of algorithms

designed to sample from the posterior probability distribution, in which
the equilibrium distribution is the target distribution of interest.
Algorithms include the Gibbs sampler and the Metropolis-Hastings
algorithm.

Objective prior distribution

A prior distribution in which the specification of the

hyperparameters suggest that very little information is conveyed by the
distribution.

Also referred to as public policy prior, uninformative prior or vague prior.

Post-burn-in

In MCMCG, the iterations after stabilization of the chain and used for
obtaining summaries of the posterior distribution.

Posterior distribution

The distribution of an event after conditioning on relevant prior

information.
Precision The reciprocal of the variance.
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Appendix A: Glossary (Condinued)

Term Definition

Prior distribution The distribution over the model parameters, characterized by

hyperparameters that encode beliefs about the model parameters.

Subjective prior distribution A prior distribution in which the specification of the hyperparameters
conveys prior beliefs about the model parameters.

Thinning A process of sampling every sth sequence of the chain for purposes of
summarizing the posterior distribution. Thinning is often used to reduce
auto-correlation across chains.

Appendix B

Multiple Regression, CODA, Bayes Factors, and Bayesian Model Averaging R Code

* #Multiple Regression Analysis:

library(MCMCpack)

datafile <— read.csv(“C:/File Path/datafile.csv”,header=T)

FullModel <— MCMCregress(math~teacherl+teacher2+teacher3+parentl +
parent2+parent3,data=datafile,marginal likelihood="“Chib95”,mcmc=10000,b0=0,
B0=c(.01,.01,.01))

plot(FullModel) # Produces the convergence plots and the posterior densities
dev.off()

summary(FullModel)

TeacherModel <— MCMCregress(math~teacher1+teacher2+teacher3,
data=datafile,marginal .likelihood="“Chib95”,mcmc=10000,b0=0,
B0=c(.01,.01,.01))

plot(TeacherModel)

dev.off()

summary(TeacherModel)

ParentModel <— MCMCregress(math~parent1+parent2+parent3,
data=datafile,marginal.likelihood=“Chib95”,mcmc=10000,b0=0,
B0=c(.01,.01,.01)) . >
plot(ParentModel)

dev.off()

summary(ParentModel)

#Bayes Factors :

bf <~ BayesFactor(TeacherModel, FullModel)
print(bf)

bf <— BayesFactor(ParentModel, FullModel)

© print(bf)

bf <— BayesFactor(TeacherModel, FullModel) print(bf)

#Convergence Diagnostics :

library(coda)

geweke.diag(FullModel, frac1=0.1, frac2=0.5) # Geweke convergence diagnostic
heidel.diag(FullModel,eps=0.1,pvalue=0.05) # Heidelberger-Welch convergence diagnostic
raftery.diag(FullModel,q=0.5,r=0.05,5=0.95,converge.eps=0.001) # Raftery-Lewis convergence diagnostic
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Appendix B

#Bayesian Model Averaging :

library(BMA)

setwd (“C:/File Path/”) # Setting working directory
datafile=read.table(“datafile.txt”,header=TRUE)

attach(datafile)

bma=bicreg{cbind(teacherl,teacher2 teacherB,parentl,parentZ,parent3) math,
strict=FALSE,OR=20)

summary(bma)

plot(bma) # Plots of BMA posterior distributions

imageplot.bma(bma) # The image plot shows which predictors are included in each model

Appendix C
Two-Level Hierarchical Linear Modeling in WinBUGS: Two Level-1 Prec{ictors

model

#N = number of students, J = number of schools

for (iin 1: N)

Y([i]~dnorm(muli], tau.r[i])

#Regression equation in terms of Level — 2 (schools)
#b[school[i], 1] = intercept

#b[school[i], 2] = slopel

#b[school[i], 3] = slope2

mul[i] <— b[school[i],1] + b[school[i],2]*x[i,1] + b[school[i],3]1*x[i,2]
for (j in 1:J) # School-level '
b[j,1:3]~dmnorm(b00[j,],Tau[,]) # Distributions on all 3 regression parameters
for (iin 1:N)

tau.r[i]~dgamma(3,3) # Distribution on data precision

31gma2 r[i] <- 1/tau.rfi]

for (j in 1:])

b00[j,1:3]~dmnorm(B.hat[j,1:3],Tau[,]) # Hyperpriors for the mean on 3 regression parameters

B.hat[j,1]<~g00[1] # Creating intercept fixed effect
B.hat[j,2] <—g00[2] # Creating slope 1 fixed effect
B.hat[j,3] <—g00[3] # Creating slope 2 fixed effect -

. #Prior specification for fixed effects
g00{1]~dnorm(0,1) # Distribution on intercept fixed effect
£00[2]~dnorm(0,1) # Distribution on slope 1 fixed effect
g00[3]~dnorm(0,1) # Distribution on slope 2 fixed effect

#Setting up fixed effect correlations

Tau[1:3,1:3]~dwish(R1[1:3,1:3],110) # Precision matrix for all fixed effects
Cov[1:3,1:3] <—inverse(Tau[1:3,1:3])

Sig.intercept<—Cov[1,1]

Sig.slopel <—Cov{2,2]

Sig.slope2 <—Cov[3,3] ,

tho.intercept.slopel <—Cov[1,2]/sqrt(Cov[1,1]*Cov([2,2]) # Correlations for fixed effects
rho.intercept.slope2 <—~Cov[1,3]/sqrt(Cov[1,1]*Cov[3,3])

rho.slopel.slope2 <—Cov{2,3]/sqrt(Cov[2,2]*Cov(3,3])

#Data list(N=110, J=39,R1=structure(.Data=c(1,0,0,0,1,0,0,0,1),.Dim=c(3,3)),
Y=c(23.35,12.3,15.76,...37.43), # Qutcome data vector of size N
school=c(1,1,2,2,...38,39,39), # Group-level (schools) data vector of size N
x=structure(.Data=c(3.1,...3.0,3.2), .Dim = c(110, 2))) # (N x 2) matrix of predictors
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Appendix D
Confirmatory Factor Analysis WinBUGS Code model

for(iin 1:N

#Measurement Equation Model
for(j in 1:P)
yli,jl~dnorm(muli,j},psi[j])

ephatli,j] <-yl[i,j]-muli,j]
muli,1]<—xi[i,1]+delta[1] # Factor 1

mul[i,2]<-~lam[1]*xi[i,1]+delta[2]
muli,3]<—lam[2]*xi[i,1]+delta
mu(i,4] <—lam[3]*xi[i,1]+delca
muli,5]

(3]
(4]
<—lam[4]*xi[i,1]+delta[5]
muli,6]<~lam[5]*xi[i,1]+delta[6]
muli,7]<—lam{6]*xi[i,1]+delta[7]

[

uli,8] <~lam[7]*xi[i,1]+delta[8]
muli,9] <—xi[i,2]+delta[9] # Factor 2
mul(i,10] <—lam[8]*xi[i,2] +delta[10]
mul(i,11]<—lam[9]*xi[i,2]+delta[11]
mul[i, 12} <—lam[10]*xi[i,2]+delta[12]
mul(i,13] <—lam[11]*xi[i,2] +delta[13]
muli,14] <—lam[12]*xi[i,2] +delta[ 14]
mul[i,15] <—lam[13]*xi[i,2] +delta[15]

#Structural Equation Model
xi[i,1:2]~dmnorm(u[1:2],phi[1:2,1:2])

#Priors on Intercepts
for(j in 1:P)delta[j]~dnorm(0.0, 1.0)

#Priors on Loadings
lam[1]~dnorm(0,psi[2])
lam[2]~dnorm(0,psi(3])
lam[3]~dnorm(0,psi[4])
lam[4]~dnorm(0,psi[5])
lam[ ]~dnorm(0,psi[6])
lam[6]~dnorm(0,psi[7])
lam[7]~dnorm(0,psi[8])
lam[8]~dnorm(0,psi[10])
lam[9]'\*dn0rm(0 psi[11])
lam[10]~dnorm(0,psi[12])
lam[11]~dnorm(0,psi[13])
lam[1
[13

2]~dnorm(0,psi[14])
]~dnorm(0,psi[15])

lam

#Priors on Precisions
for(j in 1:P)

= psi[j]~dgamma(9.0, 4.0) # Error variances

sgm[j]<—1/psilj]
psd dgamma(9.0, 4.0) # Residual variance
sgd<—1/psd # Residual precision

| phi[1:2,1:2)~dwish(R[1:2,1:2], 5) # Precision

matrix

phx[1:2,1:2] <—inverse(phi[1:2,1:2]) # Variance/

Covariance matrix
#Data

list(N=3500, P=15, u=c(0,0),y=structure(.Data=
(1, 3,...2,4),.Dim=c(3500,15)), R=structure(. Data=

¢(1,0,0,1),.Dim=c(2,2)))
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Note

1. The symbol, —, implies “not”

2. Technically, according to de Finetti (1974), this refers

1
by adding the provision that every finite subset of an infinite H’

sequence is exchangeable.

3. Press (2003) points out the interesting fact that the uni-
form prior (a vague prior) was actually used by Bayes in his

investigations.

4. The scale parameter affects spread of the distribution,
in the sense of shrinking or stretching the distribution. The :
shape parameter, as the term implies, affects the shape of the iy

distribution (Everitt, 2002).

5. As an aside, the notion of an infinitely large number of

repeated samples is no more a conceptual leap than the notion of ‘ ‘

subjective probability.

to finite exchangeability. Infinite exchangeability is obtained
|

to reduce the model space (sec e.g., Volinsky et al., 1997, for more

details).
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