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for Categorical Latent Variables
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This article examines the problem of specification error in 2 models for categorical latent variables;

the latent class model and the latent Markov model. Specification error in the latent class model

focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent

variable on measures of model adequacy as well as sample reallocation to latent classes. The results

show that the clarity of remaining latent classes, as measured by the entropy statistic depends on the

number of observations in the omitted latent class—but this statistic is not reliable. Specification

error in the latent Markov model focuses on the transition probabilities when a longitudinal Guttman

process is incorrectly specified. The findings show that specifying a longitudinal Guttman process

that is not true in the population impacts other transition probabilities through the covariance matrix

of the logit parameters used to calculate those probabilities.

Keywords: entropy, information matrix, latent class analysis, latent Markov model, specification

error

Central to the goal of empirically testing psychological theories is attempting to capture as

closely as possible the data generating process. In recent years there has been significant

progress in the development of statistical methods designed to model categorical latent vari-

ables, including latent class models and latent Markov models. Categorical latent variables

are applied to problems in which the goal is to determine the underlying latent classes to

which individuals belong. The fundamental model is latent class analysis (e.g., Clogg, 1995).

When applied to longitudinal data, the extension of latent class analysis is referred to as latent

Markov modeling, in which the focus is addressing transitions over time in a developmental

process.
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398 KAPLAN AND DEPAOLI

Both procedures have been successfully used in numerous substantive applications such as

the onset and development of substance abuse in early adolescence (e.g., Collins, Hyatt, &

Graham, 2000) and stage-sequential models for reading development (Chall, 1965; Kaplan &

Walpole, 2005). However, little is known about the behavior of these methodologies under

various types of specification error. Two forms of misspecification are examined in this study.

The first form of specification error concerns misspecifying the number of latent classes of the

categorical latent variable. The second form of misspecification focuses on the latent Markov

model and concerns misspecifying the structure of the transition probabilities over time—

for example, assuming that a Markov model follows a longitudinal Guttman process when

that assumption is false. Thus, the purpose of this article is to study these two forms of

misspecification error to examine their effects with respect to inferences drawn from application

of the method.

The organization of this article is as follows. In the next section, we describe the latent class

model and the latent Markov model, focusing on a variant of the latent Markov model, referred

to as latent transition analysis. We also present issues of model estimation and testing. Our

presentation of these models follows recent developments that show how models for categorical

latent variables can be parameterized as finite mixture models (see, e.g., McLachlan & Peel,

2000). Next, we present the design of simulation Study 1 that examines misspecification of

number of latent classes of the categorical latent variable, followed by the design of simulation

Study 2 that examines misspecification of the structure of the transition probability matrix in

the latent Markov model. Results of both studies follow. We then conclude with a summary of

the findings and recommendations for practice.

MODEL SPECIFICATION, ESTIMATION, AND TESTING

In this section, we provide the specifications of the latent class model, followed by the manifest

Markov model that sets the stage for the latent Markov model, and its special case, the latent

transition model. We also discuss estimation via a finite mixture modeling perspective, and

then turn to the problem of model testing.

The Latent Class Model

The latent class model can be written as follows. Let

Pdefg D

C
X

cD1

•c¡d jc¡ejc¡f jc¡gjc ; (1)

where Pdefg is the probability of giving a particular response to items d , e, f , and g. The

parameter •c is the proportion of individuals in latent class c. The parameters ¡d jc , ¡ejc , ¡f jc ,

and ¡gjc are the response probabilities for items d, e, f, and g, respectively, conditional on

membership in latent class c.

The application of latent class analysis is quite similar to the application of factor analysis.

That is, an investigator would hypothesize a priori a categorical latent variable � with C latent

classes. Under the hypothesis of C latent classes, the model is fit to the observed categorical
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SPECIFICATION ERROR IN CLVS 399

data. The patterns of response probabilities are used to name the latent classes. Various measures

of model fit (described later) can be used to test the hypothesis that the model based on C

latent classes reproduces the observed categorical responses.

The Latent Markov Model

Extending the notation of the latent class model, here let �c represent a categorical variable,

where here C represents the initial number of latent states. Because our interest is in modeling

movement across latent states over time, the process starts with individuals assigned to latent

state c with probability ¡1
d jc

. The latent distribution of responses at t D 1 is given by •1
c . Next,

the transition to latent state u given membership in the initial latent state c is governed by £21
ujc

,

and so on. Thus, the latent Markov model can be written as

Pdefg D

C
X

cD1

U
X

uD1

V
X

vD1

W
X

wD1

•1
c¡1

d jc£21
ujc¡

2
eju£32

vju¡3
f jv£43

wjv¡4
gjw: (2)

Note that Equation 2 reveals that when the response probabilities are all 1.0 (indicating perfect

measurement of the latent variable), then Equation 2 reduces to a manifest Markov model.

Calculation of transition probabilities is accomplished as follows. First, let �
t
c represent

the categorical latent variable containing C latent classes measured at time t. For simplicity,

let the categorical latent variable have C D 2 classes measured at t D 2 time points. The

transition from �1 to �2 can be estimated via a logistic regression of �2 on �1, yielding

a logit intercept ’ and logit slope ”. Then, in line with Asparouhov and Muthén (2007), the

transition probability from Time 1 to Time 2 can be written as

£21 � P.�2 D 1j�1/ D
exp.’2 C ”I.�1//

exp.’2 C ”I.�1// C 1
; (3)

where I.�1/ is an indicator variable for the latent class variable �1, where I.�1/ D 1 if

�1 D 1 and I.�1/ D 0 if �1 D 2.

Extension to Latent Transition Analysis

The combination of multiple indicator categorical latent variable models and Markov models

provides the foundation for the latent transition analysis of stage-sequential dynamic latent

variables. In the example given in Kaplan and Walpole (2005), they considered the problem of

change over time in discrete reading skills. The data they analyzed provided information on the

mastery of five different reading skills. At any given point in time, a child either mastered or

did not master one or more of these skills. It was deemed reasonable to postulate a model that

specified that these reading skills were related in such a way that mastery of a later skill implied

mastery of all preceding skills. At each time point, the child’s latent class membership defined

his or her latent status. The model specified a particular type of change in latent status over time.

This is defined by Collins and Flaherty (2002) as a “model of stage-sequential development,

and the skill acquisition process is a stage-sequential dynamic latent variable” (p. 289). It is

important to point out that there is no fundamental difference between latent transition analysis
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400 KAPLAN AND DEPAOLI

and latent Markov modeling. The difference is practical, with latent transition analysis being

perhaps better suited conceptually for the study of change in developmental status. The model

form for latent transition analysis utilizes Equation 2 except that model estimation is undertaken

with multiple indicators of the categorical latent variable.

Estimation

For this article the latent class and latent Markov models are estimated via maximum likelihood

(ML) using the EM algorithm (Dempster, Laird, & Rubin, 1977) under a finite mixture modeling

perspective (McLachlan & Krishnan, 1997; McLachlan & Peel, 2000). Drawing on Everitt

(1984) and McLachlan and Peel (2000) let y D .y1; y2 : : : yn/0 be a set of binary variables

obtained on a random sample of size n. In our motivating example, these variables represent

mastery/nonmastery scores on a set of reading subtests. The density of an observation yi ,

.i D 1; 2; : : : n/ can be written as

f .yi j‰/ D

C
X

cD1

 cf .yi j™c/; (4)

where

‰ D . ; ‚
0/0; (5)

is a vector of unknown parameters containing the mixing proportions   = . 1;  2; : : : ;  c/

and the model parameters ‚ D .™0
1; : : : ; ™

0
C /. The C densities are assumed to follow a finite

mixture multivariate Bernoulli distribution with mixing proportions  c.

The likelihood function can be written as

L D

n
Y

iD1

f .yi j‰/; (6)

and the observed data log-likelihood is given by

log L D

n
X

iD1

log

� C
X

cD1

 c f .yi j™j /

�

: (7)

Differentiating Equation 7 with respect to the unknown parameters yields

O c D
1

n

n
X

iD1

£c.yi j O™i/; (8)

and

C
X

cD1

n
X

iD1

£c.yi j
O‰ i /@log f .yi j™c/=@‚ D 0; (9)
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SPECIFICATION ERROR IN CLVS 401

where

£c.yi j‰/ D
 c f .yi j™c/

PC
cD1  cf .yi j‚/

(10)

is the posterior probability that yi belongs to the cth mixture (latent) class.

The EM algorithm proceeds by obtaining initial starting values of   and ™c, which are

then inserted into Equation 10 to obtain initial posterior probabilities. These initial posterior

probabilities are then inserted into Equation 8 to obtain revised estimates of   and ™. This

iterative process continues until a convergence criteria is met.

Measures of Model Adequacy

For this article, we examine several measures of model adequacy. The measures we chose are

by no means exhaustive, but are representative of the measures of model adequacy used in

practical settings. The first two measures are classical measures of model fit, including the

Pearson chi-square test and the likelihood ratio chi-square test. The Pearson chi-square test can

be obtained as follows. Let Fdefg be observed frequencies of the DEFG contingency table and

let fdefg be the expected cell counts. The Pearson chi-square test is written as

¦2 D
X

defg

.Fdefg � fdefg/
2

fdefg

; (11)

and the likelihood ratio chi-square test can be written as

LR D 2
X

defg

Fdefg ln.Fdefg=fdefg/ (12)

where the degrees of freedom are obtained by subtracting the number of parameters to be

estimated from the total number of cells of the contingency table that are free to vary. In cases

where there are sizable disagreements between the Pearson chi-square test and the likelihood

ratio chi-square test, it is likely due to the occurrence of sparse cells.

The next two indexes provided methods of model comparison and selection. These include

Akaike’s (1985) Information Criterion (AIC) and Schwarz’s (1978) criteria, more commonly

referred to as the Bayesian Information Criterion (BIC). The AIC can be written as

AIC D ¦2 � 2df ; (13)

and the BIC can be written as

BIC D ¦2 � qŒln.N/�; (14)

where q is the number of parameters in the model and N represents the sample size. These

indexes can be used to assess model adequacy from a predictive point of view, where the lowest

value of an information criterion indicates the best fitting model.

In addition to model selection measures, an important criterion for judging model adequacy

is the extent to which latent profiles can be clearly distinguished. One approach is to examine
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402 KAPLAN AND DEPAOLI

the estimated posterior probabilities of latent profile assignment for each individual. A summary

of measure of classification adequacy is given by the so-called entropy measure (Ramaswamy,

Desarbo, Reibstein, & Robinson, 1993), and written as

Entropy D 1 �

P

i

P

c.� Opic ln Opic/

n ln C
; (15)

where OPic is the estimated conditional probability of teacher i begin in profile c. Note that

these values range from 0 to 1, where one denotes perfect clear classification.

Asymptotic Covariance Matrix of the Estimates

In the context of Study 2, interest centers on the calculation of the asymptotic covariance

matrix of the estimates as this is believed to govern the manner in which specification errors

propagate through the equations of the system. Let the observed data log-likelihood be written

as

log L D

n
X

iD1

log Li : (16)

Three alternative methods can be used to obtain the asymptotic covariance matrix of the

estimates. Let the observed data log-likelihood be written as

log L D

n
X

iD1

log Li : (17)

The first approach, referred to as MLF, approximates Fisher’s information matrix via

IMLF D

n
X

iD1

@ logLi

@‰
�

@ logLi

@‰
0 : (18)

Standard ML estimation approximates Fisher’s information matrix as

IML D

n
X

iD1

@2 log Li

@‰@‰
0 : (19)

Finally, the covariance matrix of the maximum likelihood estimator with robust standard errors

(MLR) can be obtained as

I�1
MLR D I�1

MLIMLF I �1
ML: (20)

Equation 20 is also referred to as the Huber sandwich estimator (Huber, 1967), and the square

root of the diagonal elements of Equation 20 are the Huber–White standard errors (Huber,

1967; White, 1980; White, 1994).

A feature of the asymptotic covariance matrix of the estimates under ML estimation is

that for complex models, this matrix often contains patterns of zero and nonzero elements
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SPECIFICATION ERROR IN CLVS 403

which have been shown to govern the propagation of specification errors in high-dimensional

models. Specifically, in several early papers on specification errors in structural equation

models (Kaplan, 1998, 1989; Saris, Satorra, & Sörbom, 1987; Satorra, 1989) it was noted that

specification errors in measurement and structural equations did not propagate their effects

throughout the entire system of equations, as might be expected by full information ML

estimation. Kaplan (1998) speculated that the reason for this finding resided in the pattern

of zero and nonzero elements in the asymptotic covariance matrix of the estimates. Further

investigation into this issue led back to the classical results of Aitchison (1962) on the problem

of asymptotically independent parameters and separable hypotheses. A paper by Kaplan and

Wenger (1993) showed, among other things, how this feature of I �1
ML governs the propagation

of specification errors throughout systems of structural equations. In this article, we show that

specification errors in transition probabilities are governed by the pattern of zero and nonzero

values of the asymptotic covariance matrix of the MLR estimator.

DESIGN

The design of Study 1 assesses misspecification in latent class analysis where the true number

of latent classes in the population are misspecified in the analysis model. The concern here is

the manner in which class proportions are reallocated to remaining latent classes. Study 1 also

serves as a partial replication of Nylund, Asparouhov, and Muthén (2007).

The design of Study 2 represents specification error in the latent Markov model by misspeci-

fying the structural part of the model. Specifically, we assume that the structure of the transition

probability matrix in the population allows for a form of “backtracking” or “forgetting.” In the

context of the Kaplan and Walpole (2005) reading example, this might not be possible in that

once mastery is gained in a lower order skill, one cannot lose that skill and still proceed to a

higher order skill. Other substantive contexts might, however, give rise to this specification. This

transition structure is then misspecified to represent a strict Guttman process in the analysis

model, namely, a process where there is no backtracking or forgetting. It should be noted,

however, that one could start with a fully specified transition matrix in the population and

examine the effect of incorrectly fixing a number of transition probabilities in the analysis

sample. It was decided that for simplicity, and to more clearly monitor the effect of specification

error propagation, that focus would be on only one incorrectly fixed parameter.

Finally, it is not possible to examine the role that misspecification of the measurement

structure plays in the latent Markov model because misspecifying the number of latent classes in

the latent Markov modeling context changes the dimension of the transition probability matrix.

Design of Study 1

Latent class misspecification is assessed by first specifying a true four-class model in the

population and then analyzing the model under a three-class specification. In the context of

finite mixture modeling, this misspecification is akin to inadvertently omitting a component of

the finite mixture distribution. Logit thresholds for eight binary outcomes measuring the four

latent classes (C1–C4) are chosen to yield class proportions of approximately 10%, 53%, 18%,

and 20%, respectively. These proportions are not unusual in real data examples.
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404 KAPLAN AND DEPAOLI

Two different versions of the three-class model are studied. In the first version, the latent class

corresponding to the fewest number of cases in the four-class population model is not considered

in the three-class analysis model. In the second version, the latent class corresponding to the

most number of cases in the four-class population model is not considered in the three-class

analysis model. Specifically, the first condition omits C1 (accounting for approximately 10%

of the cases) and thus sets C2 as the first class; the class-ordering in this analysis is C2, C3,

and C4. The second condition omits C2 (accounting for approximately 53% of the cases) and,

as a result, retains C1 as the first class; the class-ordering is C1, C3, and C4. Both of these

misspecified conditions are studied under sample sizes of n D 500, 1,000, and 3,000. These

sample sizes are admittedly large, but allow us to ensure that the (28 D 256) cells have a

sufficient number of observations. The omitted classes conditions and sample size conditions

are completely crossed. There are 220 degrees of freedom for the true model and 229 degrees

of freedom for the misspecified model.

Of interest in Study 1 is the effect of omitting a latent class on the measures of model fit

and predictive accuracy discussed earlier. In addition, a set of class membership statistics are

examined, including the class proportions based on the estimated model, and the classification

of likely class membership. Finally, we present the entropy index, which provides an assessment

of the clarity of the classification.

Design of Study 2

For this study, we focus on the lag–1 Markov model insofar as this is the most common form

of the Markov model used in social and behavioral science research. Misspecification in the

latent Markov model is accomplished by specifying a non-Guttman process in the population

and then analyzing the model as if it were a strict Guttman process. Specifically, the population

logit parameter values corresponding to the transition from Class 2 at Time 1 back to Class 1

at Time 2 was chosen to yield transition probability values of .2, .4, and .6. These transition

probabilities are typical of those found in substantive literature (see, e.g., Kaplan & Walpole,

2005). When imposing the restriction of a strict Guttman response pattern, these transition

probability values are fixed to zero. For Study 2, we examine specification error only for a

sample size of 3,000. Preliminary studies using sample sizes of 500 and 1,000 reveal virtually

no parameter estimate bias, but bias in the standard errors relative to the empirical variability of

the estimates are observed, which, as expected, improves with increasing sample sizes.1 Three

latent classes are specified for all of the population models in this study, and 1,000 replications

were used for each analysis.

RESULTS

All analyses utilized the Monte Carlo simulation feature of the Mplus software program

(Muthén & Muthén, 1998–2007). For each analysis across both studies, 1,000 replications

1Tables for the 500 and 1,000 sample size conditions are available from the authors on request.
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SPECIFICATION ERROR IN CLVS 405

TABLE 1

Study 1 Model Fit Indexes and Class Membership Proportions

Model Entropy AIC BIC

Pearson

¦
2

Likelihood

Ratio ¦
2

Proportions:
Est. Model

Proportions:
Most Likely

Class

500 cases
True model .724 4,445.387 4,592.899 222.745 223.471 C1 D .095 .104

C2 D .530 .558
C3 D .170 .153

C4 D .205 .187
Class 1 removed .688 4,457.480 4,567.059 267.025 253.465 C2 D .532 .559

C3 D .227 .226

C4 D .241 .215
Class 2 removed .841 4,463.653 4,573.233 266.177 259.631 C1 D .107 .115

C3 D .231 .207

C4 D .663 .678
1,000 cases

True model .771 8,862.065 9,033.836 222.165 246.097 C1 D .088 .097

C2 D .532 .563
C3 D .181 .162

C4 D .199 .179
Class 1 removed .750 8,897.055 9,024.657 294.236 299.195 C2 D .531 .564

C3 D .230 .229

C4 D .239 .207
Class 2 removed .737 8,908.087 9,035.688 298.105 310.438 C1 D .102 .110

C3 D .236 .213

C4 D .661 .677
3,000 cases

True model .766 26,513.740 26,723.963 221.564 240.310 C1 D .080 .091

C2 D .530 .564
C3 D .189 .163
C4 D .201 .182

Class 1 removed .764 26,643.358 26,799.524 397.893 388.013 C2 D .516 .559
C3 D .236 .236

C4 D .247 .205
Class 2 removed .841 26,680.232 26,836.398 437.843 424.888 C1 D .090 .097

C3 D .233 .212

C4 D .677 .691

Note. C1–C4 D the four latent classes; AIC D Akaike Information Criterion; BIC D Bayesian Information

Criterion.

were used. No fewer than 997 out of 1,000 replications converged for Study 1. All 1,000

replications converged for each model in Study 2.2

Results of Study 1

Classification results for Study 1 are presented in Table 1. The clarity of the classification results

can be assessed through the entropy measure along with the proportion of cases categorized

into each of the classes. Results for the sample size conditions of 500 and 3,000 indicated that

2The number of random starts for the models used in this study were 100. The number of final stage optimization

steps was 10. These settings were used to ensure that estimates were not the result of problems with local maxima.
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406 KAPLAN AND DEPAOLI

removal of Class 2, the class accounting for the largest proportion of cases (approximately

53% of the cases), resulted in classes that were ultimately more distinct from one another.

For example, by removing Class 2 for n D 500, the entropy value was .841. The latent class

proportions based on the estimated model for this condition were .107, .231, and .663. These

proportions indicate that the classes are relatively distinct from one another and the entropy

value is therefore relatively high.

These general results can be compared to the condition when Class 1 (the class accounting

for the smallest proportion) was removed. In this case, only about 10% of the cases were real-

located to different classes. The class proportions based on the estimated model are noticeably

closer in value to one another for this condition. The classes respectively accounted for .532,

.227, and .241 of the overall proportion. As a result, the entropy value indicates less clarity of

the classification results yielding a value of .688.

Results for the sample size conditions of n D 500 and 3,000 indicate that the classes are

becoming more distinct from one another when the largest proportion are reallocated across

the remaining three latent classes. However, results from n D 1,000 differ from these findings

in that there is greater distinction between classes when the smaller class is removed; likewise,

there is less distinction between the latent classes when the larger class size is reallocated. In

this case, the entropy statistic did not follow the expected pattern.

Two indexes of model adequacy are also presented in Table 1 for the different conditions

of this study. The AIC indexes are consistently higher than the true models. However, the

BIC values are consistently higher only for the n D 3,000 misspecified conditions; the other

sample size conditions yield BIC values inconsistent with this general finding. This result

partially replicated the findings from Nylund et al. (2007) in that the BIC was more accurate

for larger sample sizes. As expected, the Pearson chi-square and likelihood ratio chi-square

tests both indicate that there is greater misfit for the misspecified models across all sample size

conditions. Furthermore, for both chi-square tests, reallocating the largest proportion of cases

(by removing Class 2) produces greater misfit than reallocating the cases from the smallest

latent class (by removing Class 1) for most conditions; the Pearson chi-square value for n D

500 was the exception to this finding.

The AIC index is consistently higher than for the true models and the two chi-square tests

consistently indicate model misfit. However, the BIC is slightly less systematic in its values

relative to the true model. Overall, the findings indicate that entropy does not consistently

measure the relative distinctiveness of the class proportions across the misspecified models. We

conclude that when determining classification adequacy, the entropy measure must be used with

caution, and in combination with substantive guidance regarding the classification proportions.

Results of Study 2

Table 2 shows the population transition probabilities for the .2, .4, and .6 conditions. Specifi-

cally, the transition from Class 2 at Time 1 back to Class 1 at Time 2 represents a non-Guttman

process and was specified as one of the transition probabilities in the population model. This

table of population transition probabilities corresponds to Tables 3 through 5, which present the

population logit parameter information for each of the transition probability conditions when

n D 3,000. Each of these population models produced logit parameter estimates comparable to

the population logit parameter values specified. For these logit estimates, the average standard
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SPECIFICATION ERROR IN CLVS 407

TABLE 2

Population Transition Probabilities

.2 Condition .4 Condition .6 Condition

T2 Classes T2 Classes T2 Classes

T1
Classes C1 C2 C3

T1
Classes C1 C2 C3

T1
Classes C1 C2 C3

C1 .301 .687 .012 C1 .301 .687 .012 C1 .301 .687 .012

C2 .200 .525 .275 C2 .400 .394 .207 C2 .600 .264 .137
C3 .000 .000 1.000 C3 .000 .000 1.000 C3 .000 .000 1.000

T3 Classes T3 Classes T3 Classes

T2
Classes C1 C2 C3

T2
Classes C1 C2 C3

T2
Classes C1 C2 C3

C1 .633 .318 .049 C1 .632 .318 .050 C1 .633 .318 .049
C2 .000 .823 .177 C2 .000 .823 .177 C2 .000 .823 .177
C3 .000 .000 1.000 C3 .000 .000 1.000 C3 .000 .000 1.000

T4 Classes T4 Classes T4 Classes

T3
Classes C1 C2 C3

T3
Classes C1 C2 C3

T3
Classes C1 C2 C3

C1 .302 .477 .220 C1 .301 .479 .220 C1 .301 .479 .220

C2 .000 .134 .866 C2 .000 .134 .866 C2 .000 .134 .866
C3 .000 .000 1.000 C3 .000 .000 1.000 C3 .000 .000 1.000

Note. T1–T4 D the four time points; C1, C2, and C3 D the three latent classes.

deviation across all 1,000 replications closely matches its corresponding estimated standard

error. Likewise, the mean squared error values are consistently very small across all conditions.

The coverage statistic for the logit parameter estimates is close to the expected 95% range for

all of the true models. Coverage represents the ability of the misspecified model to reproduce

the population parameters within each condition of the study. Specifically, the coverage is the

percentage of replications that produced confidence intervals containing the true population

parameter (Nylund et al., 2007). Likewise, power is at 100%.

Table 6 presents the model adequacy results for the population and misspecified models

for the three transition probability conditions. The entropy statistic does not appear to be

related to the size of the misspecification. The AIC and BIC both yield higher values for

the misspecified models. Likewise, the Pearson chi-square and likelihood ratio chi-square

indexes indicate relative misfit in the misspecified models. The bias measure indicates the

percentage difference between the population and misspecified parameters. As the magnitude

of the misspecification increases, bias also increases as expected.

Tables 7 through 9 present the transition probabilities and logit parameter estimates for the

.2, .4, and .6 misspecified models. The transition probability matrices shown in the top half

of the tables illustrate that the transition from Class 2 at Time 1 back to Class 1 at Time 2

was specified as zero, representing a strict Guttman process. The bottom half of the table
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408 KAPLAN AND DEPAOLI

TABLE 3

Study 2 Population Model Logit Parameters: .2 Condition

Logit Parameter Estimates

Regression Population Estimate SD SE MSE

95%

Coverage Power

C1_T2 ON
C2_T1 14.700 14.697 .101 .106 .010 .959 1.000
C1_T1 18.267 18.292 .300 .303 .091 .972 1.000

C2_T2 ON
C1_T1 19.089 19.118 .300 .301 .091 .970 1.000
C2_T1 15.649 15.647 .083 .083 .007 .947 1.000

C1_T3 ON
C1_T2 17.543 17.574 .222 .216 .050 .958 1.000

C2_T3 ON

C1_T2 16.856 16.882 .233 .223 .055 .954 1.000
C2_T2 16.540 16.538 .066 .068 .004 .957 1.000

C1_T4 ON
C1_T3 15.306 15.317 .144 .148 .021 .957 1.000

C2_T4 ON

C1_T3 15.784 15.776 .138 .137 .019 .945 1.000
C2_T3 13.136 13.133 .081 .080 .007 .944 1.000

Means

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T1 3.206 3.212 .121 .122 .015 .961 1.000
C2_T1 2.528 2.529 .126 .125 .016 .950 1.000

Note. SD D the average standard deviation across replications; SE D the average estimated standard error across
all replications; MSE D the mean squared error for the parameter.

presents results describing the accuracy of the logit parameter estimates that were obtained for

the misspecified models. Several different indicators are presented to assess the effect of the

logit parameter estimates. The information provided for each regression includes the population

logit parameter value, the average of the estimated logit parameter from the misspecified model

across all 1,000 replications, the standard deviation of the estimates across all replications, the

average estimated standard error across all replications, and the mean squared error for the

parameter. The 95% coverage statistic is also presented. The final index presented is the power

associated with rejecting the null hypothesis when it is, in fact, false.3

Table 7 shows the results for the .2 misspecification condition. The affect of this misspecifi-

cation on the subsequent transition probabilities can be assessed by comparing these results to

the population results presented in Table 2. For example, there are some transition probabilities

appearing to be substantially affected by this misspecification. One such probability represents

the transition from Class 1 at Time 1 to Class 2 at Time 2, which changed from .687 in the

true model to .659 in the misspecified model. There were also several transitions virtually

3In the Mplus program, this column is labeled as “% Sig" giving the proportion over the number of replications

in which the null hypothesis is rejected when it is true (Muthén & Muthén, 1998–2007).
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SPECIFICATION ERROR IN CLVS 409

TABLE 4

Study 2 Population Model Logit Parameters: .4 Condition

Logit Parameter Estimates

Regression Population Estimate SD SE MSE

95%

Coverage Power

C1_T2 ON
C2_T1 15.670 15.670 .091 .094 .008 .954 1.000
C1_T1 18.267 18.291 .285 .291 .082 .968 1.000

C2_T2 ON
C1_T1 19.089 19.115 .285 .290 .082 .969 1.000
C2_T1 15.649 15.648 .097 .097 .009 .950 1.000

C1_T3 ON
C1_T2 17.543 17.554 .186 .184 .035 .960 1.000

C2_T3 ON

C1_T2 16.856 16.865 .195 .191 .038 .952 1.000
C2_T2 16.540 16.539 .069 .071 .005 .954 1.000

C1_T4 ON
C1_T3 15.306 15.316 .125 .133 .016 .963 1.000

C2_T4 ON

C1_T3 15.784 15.781 .121 .122 .015 .955 1.000
C2_T3 13.136 13.133 .082 .081 .007 .945 1.000

Means

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T1 3.206 3.212 .121 .121 .015 .957 1.000
C2_T1 2.528 2.530 .126 .125 .016 .948 1.000

Note. SD D the average standard deviation across replications; SE D the average estimated standard error across
all replications; MSE D the mean squared error for the parameter.

unaffected by this misspecification such as the transition from Class 1 at Time 3 to Class 1 at

Time 4, which was .302 in the true model and .307 in this misspecified condition.

The transition probabilities that were most affected were associated, as expected, with

logit parameter estimates that were not as precise. The standard deviation, standard error,

and mean squared errors show an increase for some of the logit parameters affected by the

misspecification. One example is the regression of Class 1 at Time 2 on Class 1 at Time 1 where

the standard deviation, standard error, and mean squared error all increased in the misspecified

model when compared to the true model results presented in Table 3. Likewise, the coverage

statistic decreased from .959 to .721 for this particular regression. This contrasts with the results

corresponding to the unaffected transition probabilities. For instance, the regression of Class 1

at Time 4 on Class 1 at Time 3 did not show any notable changes in the logit parameter estimate.

Table 8 presents the results for the .4 transition probability misspecification condition and

Table 9 presents the misspecified results for the .6 condition. A similar pattern of results

emerged for these conditions as for the .2 condition. Some of the transition probabilities were

more affected by the misspecification and others were less affected. Overall, it appears that

the misspecification only had an effect on some of the logit parameter estimates whereas other

estimates were left unaffected.
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410 KAPLAN AND DEPAOLI

TABLE 5

Study 2 Population Model Logit Parameters: .6 Condition

Logit Parameter Estimates

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T2 ON
C2_T1 16.480 16.486 .105 .103 .011 .947 1.000

C1_T1 18.267 18.288 .268 .277 .072 .971 1.000
C2_T2 ON

C1_T1 19.089 19.113 .267 .276 .072 .971 1.000

C2_T1 15.649 15.656 .122 .121 .015 .952 1.000
C1_T3 ON

C1_T2 17.543 17.562 .168 .163 .029 .948 1.000
C2_T3 ON

C1_T2 16.856 16.876 .171 .170 .030 .952 1.000

C2_T2 16.540 16.535 .071 .073 .005 .955 1.000
C1_T4 ON

C1_T3 15.306 15.316 .118 .121 .014 .956 1.000

C2_T4 ON
C1_T3 15.784 15.782 .116 .112 .013 .939 1.000
C2_T3 13.136 13.135 .081 .082 .007 .949 1.000

Means

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T1 3.206 3.212 .121 .120 .015 .953 1.000

C2_T1 2.528 2.530 .126 .124 .016 .948 1.000

Note. SD D the average standard deviation across replications; SE D the average estimated standard error across

all replications; MSE D the mean squared error for the parameter.

TABLE 6

Study 2 Model Fit Indexes

Model Cases Entropy AIC BIC

Pearson

¦
2

Likelihood

Ratio ¦
2

Trans prob D .2

True 3,000 .930 38,443.378 38,875.836 4,380.079 2,008.469
Misspecified 3,000 .929 38,985.448 39,411.900 6,744.826 2,469.144

Bias �.108 1.410 1.379 53.989 22.937
Trans prob D .4

True 3,000 .926 38,674.848 39,107.306 4,385.532 2,018.565

Misspecified 3,000 .928 39,752.026 40,178.478 7,087.422 2,948.035
Bias .216 2.785 2.739 61.609 46.046

Trans prob D .6

True 3,000 .926 38,634.383 39,066.841 4,349.764 1,997.364
Misspecified 3,000 .932 40,232.652 40,659.104 7,566.672 3,406.744
Bias .648 4.137 4.076 73.956 70.562

Note. AIC D Akaike Information Criterion; BIC D Bayesian Information Criterion. Bias D 100*[(Estimate �
Population)/Population].
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SPECIFICATION ERROR IN CLVS 411

TABLE 7

Specification Error Results: .2 Condition

Transition Probabilities

T2 Classes

T1 Classes C1 C2 C3

C1 .324 .659 .017
C2 .000 .631 .369

C3 .000 .000 1.000

T3 Classes

T2 Classes C1 C2 C3

C1 .670 .286 .043

C2 .000 .825 .175
C3 .000 .000 1.000

T4 Classes

T3 Classes C1 C2 C3

C1 .307 .479 .214

C2 .000 .137 .863
C3 .000 .000 1.000

Logit Parameter Estimates

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T2 ON
C1_T1 18.267 17.995 .226 .233 .125 .721 1.000

C2_T2 ON
C1_T1 19.089 18.705 .225 .231 .198 .552 1.000
C2_T1 15.649 15.539 .092 .091 .021 .756 1.000

C1_T3 ON
C1_T2 17.543 17.766 .253 .242 .114 .910 1.000

C2_T3 ON
C1_T2 16.856 16.913 .267 .254 .074 .961 1.000
C2_T2 16.540 16.549 .065 .067 .004 .950 1.000

C1_T4 ON
C1_T3 15.306 15.362 .147 .150 .025 .943 1.000

C2_T4 ON

C1_T3 15.784 15.809 .140 .140 .020 .956 1.000
C2_T3 13.136 13.155 .081 .079 .007 .937 1.000

Means

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T1 3.206 3.379 .124 .124 .045 .745 1.000
C2_T1 3.528 2.216 .134 .133 .115 .354 1.000

Note. SD D the average standard deviation across replications; SE D the average
estimated standard error across all replications; MSE D the mean squared error for the

parameter.
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412 KAPLAN AND DEPAOLI

TABLE 8

Specification Error Results: .4 Condition

Transition Probabilities

T2 Classes

T1 Classes C1 C2 C3

C1 .366 .615 .018
C2 .000 .600 .400

C3 .000 .000 1.000

T3 Classes

T2 Classes C1 C2 C3

C1 .670 .286 .044

C2 .000 .825 .175
C3 .000 .000 1.000

T4 Classes

T3 Classes C1 C2 C3

C1 .305 .481 .214

C2 .000 .137 .863
C3 .000 .000 1.000

Logit Parameter Estimates

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T2 ON
C1_T1 18.267 18.020 .197 .204 .100 .724 1.000

C2_T2 ON
C1_T1 19.089 18.539 .196 .204 .340 .254 1.000
C2_T1 15.649 15.409 .119 .116 .072 .450 1.000

C1_T3 ON
C1_T2 17.543 17.753 .224 .212 .094 .884 1.000

C2_T3 ON
C1_T2 16.856 16.899 .231 .221 .055 .952 1.000
C2_T2 16.540 16.550 .067 .069 .005 .952 1.000

C1_T4 ON
C1_T3 15.306 15.354 .127 .135 .018 .941 1.000

C2_T4 ON

C1_T3 15.784 15.813 .122 .125 .016 .955 1.000
C2_T3 13.136 13.157 .081 .080 .007 .937 1.000

Means

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T1 3.206 3.511 .128 .127 .109 .316 1.000
C2_T1 2.528 1.831 .145 .142 .507 .009 1.000

Note. SD D the average standard deviation across replications; SE D the average
estimated standard error across all replications; MSE D the mean squared error for the

parameter.
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SPECIFICATION ERROR IN CLVS 413

TABLE 9

Specification Error Results: .6 Condition

Transition Probabilities

T2 Classes

T1 Classes C1 C2 C3

C1 .414 .568 .018
C2 .000 .574 .426

C3 .000 .000 1.000

T3 Classes

T2 Classes C1 C2 C3

C1 .663 .292 .044

C2 .000 .824 .176
C3 .000 .000 1.000

T4 Classes

T3 Classes C1 C2 C3

C1 .303 .482 .215

C2 .000 .137 .863
C3 .000 .000 1.000

Logit Parameter Estimates

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T2 ON
C1_T1 18.267 18.172 .194 .201 .047 .904 1.000

C2_T2 ON
C1_T1 19.089 18.487 .193 .201 .399 .184 1.000
C2_T1 15.649 15.302 .172 .171 .150 .467 1.000

C1_T3 ON
C1_T2 17.543 17.721 .194 .186 .693 .891 1.000

C2_T3 ON
C1_T2 16.856 16.900 .197 .194 .041 .957 1.000
C2_T2 16.540 16.547 .070 .072 .005 .955 1.000

C1_T4 ON
C1_T3 15.306 15.342 .120 .123 .016 .940 1.000

C2_T4 ON

C1_T3 15.784 15.807 .118 .113 .014 .936 1.000
C2_T3 13.136 13.159 .080 .081 .007 .935 1.000

Means

Regression Population Estimate SD SE MSE
95%

Coverage Power

C1_T1 3.206 3.615 .132 .131 .185 .082 1.000
C2_T1 2.528 1.334 .163 .160 1.453 .000 1.000

Note. SD D the average standard deviation across replications; SE D the average
estimated standard error across all replications; MSE D the mean squared error for the

parameter.
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414 KAPLAN AND DEPAOLI

Patterns in I
�1

MLR

Tables 10 through 12 present a portion of the correlation matrix of the estimates for a subset

of the logit parameters under the .2, .4, and .6 misspecification conditions. These correlations

were produced from a single replication with a sample size of 500,000, thus approaching

population values. In the context of our true model, the parameter ”21
1j2

is the one associated

with the non-Guttman transition probability. Similar to the results described for Tables 7 through

9, this parameter appears to relate to some of the subsequent parameters and not to others.

Table 10 indicates that some of the correlations with ”21
1j2

are relatively higher than others.

The higher correlations correspond to the logit parameters that were more affected by the

misspecification. Likewise, the lower correlation values correspond to the logit parameters

that were largely unaffected by the misspecification. These results hold true for the .4 and .6

conditions as well.

To see the role played by the pattern in I�1
MLR consider the logit parameter ”21

2j2
. The correlation

between this parameter and the true parameter is .465 for the .2 transition probability condition.

This differs from the results for ”43
1j1

, which corresponded to a relatively unaffected transition

probability. The correlation between this parameter and the true parameter was �.003 for the

.2 condition. A similar pattern holds for the remaining conditions presented in Tables 11 and

12. However, the magnitude of nonzero and near-zero elements became more extreme as the

misspecified transition probability value increased. These results are in line with the findings

of Kaplan and Wenger (1993) regarding the role of the asymptotic covariance matrix of the

estimates in the propagation of specification errors.

TABLE 10

Asymptotic Correlation Matrix for the Estimates: .2 Condition

Parameter ’1 ’2 ”
21

11
”

21

2j1
”

21

1j2
”

21

2j2
”

32

1j1
”

32

2j1
”

32

2j2
”

43

1j1
”

43

2j1
”

43

2j2

’1 1.000 .920 �.023 �.022 �.043 �.051 .000 .000 �.002 .000 .000 .000

’2 .892 1.000 .043 .043 �.004 �.006 .001 .001 �.002 .000 .000 .000

”
21

1j1
�.019 .065 1.000 .978 �.037 �.055 �.017 .000 �.025 �.003 �.002 �.002

”
21

2j1
�.022 .075 .971 1.000 �.041 �.055 .010 .005 �.023 .001 .000 .000

”
21

1j2
.465 �.052 �.004 �.018 �.003 �.004 �.005

”
21

2j2
�.061 .026 �.102 �.081 1.000 .029 .008 �.025 .002 .002 .002

”
32

1j1
�.004 .014 �.021 .013 .030 1.000 .884 �.077 �.012 �.012 �.008

”
32

2j1
.000 .001 .000 .004 .005 .894 1.000 �.094 .033 .030 .003

”
32

2j2
�.004 .006 �.024 �.020 �.008 �.076 �.094 1.000 .000 .000 �.014

”
43

1j1
�.003 .003 �.005 .001 .009 �.010 .031 .002 1.000 .544 .047

”
43

2j1
�.001 .006 �.004 .002 .011 �.009 .029 .002 .552 1.000 .015

”
43

2j2
�.001 .015 �.004 .003 .023 �.002 .004 �.011 .048 .016 1.000

Note. Values above the diagonal represent parameter correlations for the true model. Values below the diagonal

represent parameter correlations for the misspecified model. The notation, ”
32

2j1
, represents the logit slope for the

probability of being in Class 2 at Time 3 given that you were in Class 1 at Time 2. Bold values correspond to the
correlations between the misspecified parameter ”

21

1j2
and the other parameters.
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SPECIFICATION ERROR IN CLVS 415

TABLE 11

Asymptotic Correlation Matrix for the Estimates: .4 Condition

Parameter ’1 ’2 ”
21

11
”

21

2j1
”

21

1j2
”

21

2j2
”

32

1j1
”

32

2j1
”

32

2j2
”

43

1j1
”

43

2j1
”

43

2j2

’1 1.000 .917 �.017 �.019 �.045 �.050 .000 .000 �.002 .000 �.001 .000

’2 .863 1.000 .039 .041 �.017 �.004 .001 .001 �.003 .000 .000 �.001

”
21

1j1
�.001 .068 1.000 .977 �.070 �.063 �.016 .000 �.027 �.003 �.002 �.002

”
21

2j1
�.006 .093 .968 1.000 �.069 �.059 .010 .005 �.025 .000 .001 .000

”
21

1j2
.613 �.028 �.001 �.018 �.003 �.002 �.003

”
21

2j2
�.066 .042 �.182 �.136 1.000 .033 .009 �.021 .003 .003 .001

”
32

1j1
�.006 .035 �.024 .015 .067 1.000 .885 �.068 �.012 �.012 �.009

”
32

2j1
.000 .005 �.001 .005 .011 .893 1.000 �.083 .032 .030 .004

”
32

2j2
�.004 .011 �.026 �.021 .006 �.076 �.096 1.000 .001 .000 �.013

”
43

1j1
�.005 .007 �.006 .002 .018 �.007 .030 .003 1.000 .537 .046

”
43

2j1
.000 .011 �.006 .001 .018 �.007 .029 .002 .545 1.000 .012

”
43

2j2
.003 .024 �.006 .003 .030 .000 .005 �.010 .047 .013 1.000

Note. Values above the diagonal represent parameter correlations for the true model. Values below the diagonal
represent parameter correlations for the misspecified model. The notation, ”

32

2j1
, represents the logit slope for the

probability of being in Class 2 at Time 3 given that you were in Class 1 at Time 2. Bold values correspond to the
correlations between the misspecified parameter ”

21

1j2
and the other parameters.

TABLE 12

Asymptotic Correlation Matrix for the Estimates: .6 Condition

Parameter ’1 ’2 ”
21

11
”

21

2j1
”

21

1j2
”

21

2j2
”

32

1j1
”

32

2j1
”

32

2j2
”

43

1j1
”

43

2j1
”

43

2j2

’1 1.000 .917 �.010 �.014 �.045 �.049 .000 .000 �.001 .000 .000 .000

’2 .810 1.000 .029 .035 �.029 �.005 .001 .001 �.001 .000 .000 .000

”
21

1j1
.017 .082 1.000 .974 �.092 �.071 �.015 �.001 �.028 �.002 �.002 �.002

”
21

2j1
.012 .120 .970 1.000 �.088 �.065 .009 .004 �.026 .001 .000 .000

”
21

1j2
.695 �.011 .001 �.015 �.001 �.001 �.002

”
21

2j2
�.086 .062 �.267 �.206 1.000 .029 .007 �.015 .004 .002 .003

”
32

1j1
�.006 .053 �.028 .010 .090 1.000 .887 �.056 �.013 �.013 �.010

”
32

2j1
.001 .006 .000 .005 .008 .889 1.000 �.069 .032 .031 .005

”
32

2j2
�.003 .020 �.029 �.022 .024 �.071 �.093 1.000 .000 �.001 �.013

”
43

1j1
�.005 .011 �.007 .000 .024 �.007 .031 .003 1.000 .528 .045

”
43

2j1
.001 .019 �.007 .000 .027 �.006 .030 .003 .534 1.000 .008

”
43

2j2
.010 .036 �.007 .001 .032 �.001 .006 �.010 .046 .011 1.000

Note. Values above the diagonal represent parameter correlations for the true model. Values below the diagonal
represent parameter correlations for the misspecified model. The notation, ”

32

2j1
, represents the logit slope for the

probability of being in Class 2 at Time 3 given that you were in Class 1 at Time 2. Bold values correspond to the
correlations between the misspecified parameter ”

21

1j2
and the other parameters.
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SUMMARY AND CONCLUSIONS

The availability of software programs for conducting latent class analysis as well as latent

Markov modeling and its variants is now widespread. In this article, we utilized Mplus for

our analyses, but programs such as WinLTA (Collins, Lanza, Schafer, & Flaherty, 2002), SAS

PROC LTA (SAS Institute, 2000), Latent GOLD (Vermunt & Magidson, 2000), as well as

programs available in the R programming environment (R Development Core Team, 2008),

now allow social and behavioral scientists to easily employ these powerful methods to gain

insights into substantive problems. As such, and in line with studies of other methodologies,

it is important to understand how these models behave when their underlying assumptions are

violated.

This article focuses specifically on one, arguably, major assumption when employing these

models—namely, correct model specification. In the context of latent class analysis, specifica-

tion error manifests itself most obviously in the omission of a latent class. In our investigation,

we found that the reallocation of observations to remaining latent classes did not necessarily

result in clear separation of the latent classes. Clarity of separation was found to be related,

in part, to the size of the omitted latent class, but the entropy measure was not a reliable

indicator of clarity of class separation across different sample size conditions. These results

are similar to the findings presented in Lubke and Muthén (2007), which in part compared

correct class assignment with the entropy measure in the context of factor mixture models.

They found that the improvement of correct class assignment did not correspond to an increase

in the entropy index under conditions of lower class separation. Although these results are

not sufficient to conclude that the entropy index is an unreliable indicator of classification

clarity, they do suggest the need for more extensive research on this measure under different

modeling conditions in order to determine the accuracy of the entropy index. We conclude

that the entropy measure should be used with caution and in conjunction with class proportion

measures as well as substantive theory to decide on the number of latent classes to retain.

We also note that only a limited selection of model adequacy measures were included in

this study. There are additional measures that have been used in similar modeling situations for

determining class enumeration. For example, Nylund, Asparouhov, and Muthén (2007) found

the Bootstrap Likelihood Ratio Test (BLRT) to be a consistent indicator of latent classes within

the context of latent class analysis. Likewise, the Lo–Mendell–Rubin (LMR) test is another

alternative for assessing latent class enumeration. The BLRT and LMR tests are similar in

that the difference between two latent class models (e.g., a three-class model vs. a two-class

model) is not assumed to be chi-square distributed as is the case with the likelihood ratio test.

There are also other information-based criteria, such as the sample size adjusted BIC and the

consistent AIC, that are commonly used to assist in assessing class enumeration. For a more

detailed study directly focused on the optimal criteria used for assessing class enumeration

within the context of latent class analysis, see Nylund, Asparouhov, and Muthén (2007).

In the context of latent Markov modeling, structural relations among logit parameters (and

corresponding transition probabilities) can be specified to represent a strict Guttman process

or a process that allows for some form of backtracking or forgetting over time. We found,

as in studies of structural equation modeling, that specifying a strict Guttman process that is

not true in the population will result in a propagation of bias in parameter estimates that is

controlled by the asymptotic covariance matrix of the logit parameters. As noted by Kaplan
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and Wenger (1993), this result is somewhat troubling insofar as the initial specification of

the model governs the pattern of values in I�1
MLR, and subsequent changes to the model will

likely result in new biases that might be difficult, if not impossible, to predict ahead of time.

However, as originally suggested by Kaplan (1998), a paper by Yuan, Marshall, and Bentler

(2003) provided a Hausman-like specification error test (Hausman, 1978) to gauge the impact

of an omitted parameter on other parameters in the model. Yuan, Marshall, and Bentler (2003)

noted that the concepts of asymptotic independence and separability discussed in Kaplan and

Wenger (1993) might be apropos to their test. We advocate additional research on this topic,

extended to latent transition models.

Not every form of specification error was examined in this article. Another form of misspec-

ification relevant to the latent Markov model that is worthy of study concerns the problem of

incorrectly specifying homogenous or heterogenous transition probabilities, akin to the problem

of invariance testing in structural equation modeling. We also note that only lag-1 models

were considered in this study. Although uncommon, higher lagged Markov models can be

specified. We expect that there would be differences in the propagation of specification error

throughout the logit parameters depending on the exact form of the specification error, but that

the mechanism that gives rise to this propagation (i.e., the pattern of zero and nonzero elements

in the information matrix) is the same regardless of the lag. Nevertheless, we view this study as

the first to explore specification error in both latent class analysis and latent Markov modeling

with the hope of providing insights into the behavior of these important analytic methods.
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