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This article examines the effects of clustering in latent class analysis. A comprehensive simulation

study is conducted, which begins by specifying a true multilevel latent class model with varying

within- and between-cluster sample sizes, varying latent class proportions, and varying intraclass

correlations. These models are then estimated under the assumption of a single-level latent class

model. The outcomes of interest are measures of bias in the Bayesian Information Criterion (BIC)

and the entropy R
2 statistic relative to accounting for the multilevel structure of the data. The results

indicate that the size of the intraclass correlation as well as between- and within-cluster sizes are the

most prominent factors in determining the amount of bias in these outcome measures, with increas-

ing intraclass correlations combined with small between-cluster sizes resulting in increased bias.

Bias is particularly noticeable in the BIC. In addition, there is evidence that class separation interacts

with the size of the intraclass correlations and cluster sizes in producing bias in these measures.

Keywords: BIC, cluster effects, entropy, latent class analysis, model adequacy, multilevel latent

class analysis

Statistical modeling of theoretical relationships in the social and behavioral sciences often

requires the use of latent variables. The most common type of latent variable used in statistical

modeling is the continuous common factor model obtained via the methods of factor analysis.

Although the use of continuous latent variables arguably dominates most applications of

latent variable modeling, it is often useful to hypothesize the existence of categorical latent

variables. Such categorical latent variables are presumed to explain response frequencies among

dichotomous or ordered categorical variables. The method used to estimate categorical latent

variables is latent class analysis (LCA).

Conventional LCA was introduced by Lazarsfeld and Henry (1968) for the purposes of

deriving latent attitude variables from responses to dichotomous survey items. Important con-

tributions to LCA have been made by Clogg (1995). For a review see Magidson and Vermunt

(2004). In a traditional LCA it is assumed that an individual belongs to one and only one
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526 KAPLAN AND KELLER

latent class, and that given an individual’s latent class membership, the observed responses

are independent of one another—referred to as the assumption of local independence. The

latent classes arise from the patterns of response frequencies to categorical items, where the

response frequencies play a role similar to that of the correlation matrix in factor analysis

(Lanza, Collins, Lemmon, & Schafer, 2007). The analog of factor loadings are parameters that

estimate the probability of a particular response on the manifest indicators given membership

in the latent class. Unlike continuous latent variables (i.e., factors), categorical latent variables

(latent classes) divide individuals into mutually exclusive and exhaustive groups.

Until recently, applications of LCA were limited to single-level problems, ignoring possible

clustering of observations due to sample design and research considerations. However, utilizing

the finite mixture modeling framework of LCA (McLachlan & Peel, 2000) implemented in

software packages such as Mplus (L. K. Muthén & Muthén, 1998–2007) and Latent GOLD

(Vermunt & Magidson, 2000), more general frameworks been developed that allow latent class

models to be extended to multilevel contexts.

A review of the extant literature on multilevel LCA has revealed important and interesting

applications (see, e.g., Kaplan, Kim, & Kim, 2009; Van Horn et al., 2008). In a recent paper,

Van Horn et al. (2008) examined multilevel mixture models for the evaluation of interventions

in group randomized trials. The motivation for using mixture models to evaluate interventions

is that an intervention might not have a “one-size-fits-all” effect. That is, an intervention might

be more or less beneficial for subpopulations of individuals, and the goal would be to identify

those subpopulations for which the intervention is most beneficial.

The Van Horn et al. (2008) article pays special attention to evaluating intervention effects in

group randomized trials. Group randomized trials figure prominently in educational interventions

in which classrooms (and sometimes whole schools) are randomly assigned to receive an inter-

vention. Proper statistical treatment of group randomized trials requires random-effects models

that assume that individuals are independent of each other conditional on group membership.

The application presented by Van Horn et al. (2008) examined the efficacy of a group

randomized trial of an intervention aimed at mitigating problem behavior among youth. The

specific goal was to examine whether the intervention had differential affects among those

students engaged in experimenting with illicit substances versus students engaged in more

problematic behaviors such as violence. The intervention took place at the community level, but

students were nested within schools. The two-level model that Van Horn et al. tested consisted

of a within-school latent class model, with a single latent class variable consisting of four and

five latent classes. In a fixed-effects model, it would normally be assumed that the proportion

of students within each latent class is constant across the schools. Van Horn and colleagues

assumed that these proportions vary across schools and are affected by the community-level

intervention. On the whole, Van Horn et al. found strong evidence that the probability that a

student belonged to a specific latent class of problem behavior varied across schools. In terms

of treatment and control equivalency, no difference was found in the proportion of students

in the latent classes prior to the intervention focusing on youth behaviors. Additionally, Van

Horn et al. showed how power analyses could be used to examine intervention effects in the

multilevel latent class model.

In a recent didactic paper, Kaplan et al. (2009) applied multilevel LCA (Vermunt, 2003) to

reading data from the Early Childhood Longitudinal Study (ECLS; National Center for Educa-

tion Statistics, 2001). Specifically, they used the fall first-grade data of the ECLS–K, focusing
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CLUSTER EFFECTS IN LCA 527

on five reading subtests. Given the pattern of response probabilities, labels for the latent classes

were generated. The Alphabet Knowledge (AK) class consisted of individuals with moderate

or high probabilities of passing the letter recognition subtest and low probabilities of passing

the rest of the subtests. The Phonemic Awareness (PA) class consisted of individuals with a

very high probability of passing the letter recognition subtest, moderately high probabilities of

passing the beginning and ending sounds subtests, and very low probabilities for the rest of

the subtests. The Word Knowledge (WK) class consisted of very high probabilities of passing

all of the subtests except the words in context subtest. In comparison to the conventional

latent class model, which ignored clustering, the results showed virtually no difference in

response probabilities or latent class proportions when taking into account clustering. However,

a dramatic decrease in model selection measures (the Akaike’s Information Criterion [AIC]

and Bayesian Information Criterion [BIC]) was observed, suggesting that accounting for the

multilevel structure of the data improved predictive accuracy.

A common practice when using multilevel modeling methods is to provide an assessment

of the amount of variation in the outcomes of interest that lies among clusters. This assessment

provides the analyst with a sense of the impact that clustering might have on the results.

In considering the application of multilevel LCA to substantive problems in the social and

behavioral sciences, it is also crucial to determine the impact of clustering. If the amount of

variance that lies at the cluster level is substantively small, then perhaps not much is lost by

modeling the disaggregated data under the assumption of independent observations. However,

if the amount of between-cluster variance is large, then it might not be reasonable to consider

the data as nonindependent, and explicit multilevel modeling must take place.

Although there have been many studies examining the impact of clustering in the multilevel

regression modeling context (see, e.g., Goldstein, 2003; Mass & Hox, 2004), a review of

the extant literature suggests that the effects of clustering have not been studied in the LCA

setting. This article, therefore, adds to the methodological literature by examining the impact of

clustering within the latent class modeling framework, with a unique focus on model selection

and classification adequacy.

The organization of this article is as follows. Next we provide the specification of the

multilevel latent class model. This is then followed by a discussion of the design of the

simulation study. The results then follow. Finally, the article concludes with a summary and

implications of our findings for the design and analysis of studies intended to utilize LCA.

MULTILEVEL LATENT CLASS ANALYSIS

We assume that the reader is familiar with the specification of the conventional latent class

model (e.g., Clogg, 1995). Our specification of the multilevel latent class model is in line with

Vermunt (2003). To contextualize this problem, consider students as the individuals and schools

as the clusters. To begin, let yig be the vector of responses for student i in school g, where

i D 1; 2; : : : ; ng; g D 1; 2; : : : ; G, and let s be a possible response pattern vector. Furthermore,

let the response vector yig represent dichotomous proficiency scores on, say, a mathematics

competency assessment. Let K be the number of indicators, where k D 1; 2; : : : ; K. A specific

outcome level for indicator k is denoted as sk and the total number of categories is Sk . For

example, in the case of a dichotomous item k then Sk D 2. Further, let Cig be a latent class vari-
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528 KAPLAN AND KELLER

able with specific latent class c, c D 1; 2; : : : ; M, where M is the total number of latent classes.

Following Vermunt (2003), the multilevel latent class model can be written as follows. Let

P.yig D s/ D

MX

cD1

P.Cig D c/P.yig D sjCig D c/ (1)

D

MX

cD1

P.Cig D c/

KY

kD1

P(yigk D skjCig D c/: (2)

We see that the probability of a particular response pattern on the mathematics competency

assessment for student i in school g is conditional on membership in a specific latent class.

These conditional probabilities in the second part of Equation 1 are used to name the categorical

factor in a manner similar to the use of factor loading patterns in factor analysis. The weights

given by P.Cig D c/ ensure that the probabilities sum to one.

As in conventional LCA, two model probabilities must be obtained. The first is the proba-

bility that the categorical latent variable Cig takes on a particular value c.

P.Cig D c/ D
exp.”cg/

MX

rD1

exp.”rg/

; (3)

The second is the probability that the response pattern on the indicators yigk is observed at sk

written as

P.yigk D skjCig D c/ D
exp.“k

sk cg/

SkX

uD1

exp.“k
ucg/

; (4)

where ”cg and “k
skcg are logit parameters, with the restrictions that, say, ”1g D “k

1cg D 0.

Vermunt (2003) proposed two approaches to multilevel LCA based on including either

parametric or nonparametric random effects in the multilevel latent class model. The two

approaches differ conceptually in how the between-cluster heterogeneity is explained. The

parametric approach assumes that cluster effects originate from a certain probability dis-

tribution, whereas the nonparametric approach assumes the existence of a discrete number

of mixture components. We focus on the parametric approach because it allows for the

calculation of intraclass correlations. Under the parametric approach the values of ”cg, other

than the one constrained for identification, are assumed to follow normal distributions such

that ”cg D ”c C £c � ug, where ug is standard normal. In particular, for the three-class model,

which is the focus of the simulation study in the next section, the random effects are

”1g D 0

”2g D ”2 C £2 � ug

”3g D ”3 C £3 � ug :

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
],

 [
M

r 
D

av
id

 K
ap

la
n]

 a
t 0

8:
02

 1
7 

O
ct

ob
er

 2
01

1 



CLUSTER EFFECTS IN LCA 529

The Intraclass Correlation

In conventional multilevel modeling for continuous variables, a logical first step is to assess

amount of variance in Level 1 variables accounted for by cluster effects. The measure typically

used for this assessment is the intraclass correlation coefficient (ICC). An analog of the

intraclass correlation extended to the multinomial logistic model for random effects was given

by Hedeker (2003) and can be written as

¡Ic D
¢2

c

¢2
c C  2=3

(5)

where ¢2
c is the Level 2 variance. Equation 5 makes use of the fact that the Level 1 variance

in the random effects logistic regression framework is  2=3 � 3:29. For the three-class model

it is possible to specify two independent intraclass correlations:

ICC1 D
£2

2

£2
2 C  2=3

and ICC2 D
£2

3

£2
3 C  2=3

:

The focus of the simulation study is the manipulation of the size of the ICCs to alter the

amount of total variance that lies between groups.

Measures of Model Adequacy

In LCA, proceeding to name the latent classes presumes that the model adequately describes

the data. Although there are many methods for assessing the adequacy of a latent class model,

for simplicity, we focus on one measure of model selection and one measure of classification

adequacy. In terms of model selection, we focus on the BIC, also referred to as Schwarz

criterion (Schwarz, 1978). The BIC is a measure used for selecting among a set of competing

models and has its origins in model selection based on the notion of Bayes factors (Kass &

Raftery, 1995). It is, arguably, the most widely used method for model selection in the LCA

context (Magidson & Vermunt, 2004). The BIC can be written in a general form as

BIC D �2 ln L C qŒln.n/�; (6)

where ln L is the log-likelihood, q is the number of parameters in the model, and n represents

the sample size. In terms of model comparison, the model with the lower BIC among a set of

competing models is preferred from a posterior predictive point of view.

In terms of classification quality, we focus on the R2
entropy , which starts with a general form

related to the reduction of classification errors. Specifically, following Vermunt and Magidson

(2000), the proportional reduction of classification errors can be written as

R2
c D

Error.C D c/ � Error.C D cjy D y/

Error.C D c/
(7)
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530 KAPLAN AND KELLER

where

Error.C D cjy D y/ D

IX

iD1

wi Error.Cig D cigjyig D yig/

n
(8)

and where wi are case weights that can be used when analyzing data arising from a complex

sampling design, such as the design implemented for the ECLS–K. From here, a number of

R2 measures can be defined (Vermunt & Magidson, 2000). One measure of the proportional

reduction in classification errors is based on the concept of entropy. Entropy, in the context of

LCA, was developed by Ramaswamy, Desarbo, Reibstein, and Robinson (1993) as an overall

measure of the degree of “fuzziness” in class membership. Values close to zero can occur when

the posterior probabilities of class membership are equal, suggesting that the latent classes are

not distinct. Higher values of entropy suggest clearer distinctions among the latent classes.

An R2
entropy measure is obtained by substituting Error.Cig D cigjyig D yig/ in Equation 8

with

Error.Cig D cigjyig D yig/ D

KX

xD1

� OP .Cig D cigjyig D yig/

� log OP .Cig D cigjyig D yig/:

(9)

SIMULATION STUDY METHODS

A simulation study was conducted to determine the effects of ignoring clustering on commonly

used measures of model adequacy in a three-class LCA. The experimental conditions included

varying the size of the intraclass correlations, the within- and between-cluster sample sizes,

and latent class sizes.

Intraclass Correlations

Under the specification of the three-class model it is only possible to specify two independent

values of the intraclass correlation. Both of these intraclass correlations were simulated at five

levels: 0.0, 0.1, 0.2, 0.3, and 0.4.

Within- and Between-Cluster Size

The following within- and between-cluster sample sizes were constructed to yield a total sample

size of 1,200: 15 W/80 B, 20 W/60 B, 30 W/40 B, and 80 W/15 B, 60 W/20 B, 40 W/30 B.

Note that we do not alter the total sample size. Although manipulating the total sample size

might be of some interest, researchers often need to make decisions about how to gather data

in the most efficient way when, for example, more groups might be examined at the cost of

less cases per group or vice versa. To study the effect of this trade-off we chose to focus on
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CLUSTER EFFECTS IN LCA 531

examining the effects of altering the between- versus within-cluster sizes holding a reasonably

large overall sample size.

Latent Class Proportions

To investigate the role of class proportions, three conditions were simulated: one in which class

proportions were homogenous (.33, .33, .33) and the other two in which class proportions were

heterogeneous (.7, .2, .1) and (.2, .7, .1).

Latent Class Structure

Six dichotomous items (0 D negative response, 1 D positive response) were simulated for

each experimental condition. The class-specific positive response probabilities for the six items

were set to (0.8, 0.8, 0.8, 0.8, 0.8, 0.8), (0.8, 0.8, 0.8, 0.2, 0.2, 0.2), and (0.2, 0.2, 0.2, 0.2, 0.2,

0.2) for latent Classes 1, 2, and 3, respectively, to create classes with a moderate degree of

separation. The probability of a positive response on any of the six items, given membership

in latent Class 1 is 0.8, given membership in latent Class 2 is 0.8 for the first three items and

0.2 for the last three items, and given membership in latent Class 3 is 0.2.

Our choices of experimental conditions follow closely that of Lukočiene and Vermunt (2010)

and provide a reasonable degree of class separation, as measured by the R2
entropy . The average

R2
entropy value of the population-generating models across all experimental conditions is about

0.68 .SD D 0:04/. As expected from Lukočiene & Vermunt, the amount of separation is

neither too high nor too low and is arguably representative of the class separation found in

most empirical studies. Tables of population values are available on request.

Each of the four factors (the two intraclass correlations, the set of within- and between-

cluster sample size conditions, and the latent class proportions) were fully crossed to yield a

total of 450 unique experimental conditions. The MCstudy routine in Latent GOLD (Vermunt &

Magidson, 2000) was used to conduct the simulation study and all analyses utilized maximum

likelihood under a combination of the Expectation Maximization (EM) algorithm and the

Newton–Raphson algorithm.

The steps of the simulation study were as follows: First, for each cell of the design, 100

replications of N D 1,200 cases were generated according to the specific correct population

model.1 Second, the data were analyzed with the correct model and summary statistics were

recorded—in particular the average BIC and average R2
entropy over the 100 replications for

each cell. These average values for the true model constitute the comparison base for the

misspecified models. Third, the data were analyzed ignoring clustering and the average BIC

and average R2
entropy for the misspecified model were calculated. Relative to the population-

generating model, the misspecified model was created by removing the continuous group-

level factor from the population-generating model. This resulted in the elimination of the two

parameters that determine intraclass correlations. Again, the outcomes of interest in this study

are the percentage under or overestimation in the BIC and R2
entropy from the model that ignores

1Preliminary analyses using larger numbers of replications did not reveal substantial differences when compared

to 100 replications.
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532 KAPLAN AND KELLER

TABLE 1

Difference in Bayesian Information Criterion: Class Proportions (.33, .33, .33)

ICC2 ICC2 ICC2

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

15 W/80 B 20 W/60 B 30 W/40 B

0.0 �13 35 103 163 238 �13 43 114 188 254 �13 59 136 215 292
0.1 51 177 232 270 325 68 185 255 295 348 76 222 278 339 388

ICC1 0.2 142 242 298 328 356 160 275 313 351 389 177 297 355 396 438

0.3 229 330 334 357 385 252 353 365 389 406 275 375 396 425 449
0.4 315 378 397 399 405 344 406 429 433 448 369 431 458 482 449

40 W/30 B 60 W/20 B 80 W/15 B

0.0 �13 58 142 227 298 �13 79 152 247 338 �13 76 160 248 345
0.1 90 224 284 350 406 96 234 312 354 431 104 239 320 354 420

ICC1 0.2 186 313 362 392 446 207 325 362 406 443 216 322 383 401 459

0.3 301 389 431 432 473 306 425 435 449 492 320 418 451 480 470
0.4 383 461 465 477 496 400 469 491 500 506 423 484 491 500 504

Note. ICC D intraclass correlation coefficient; W D within-cluster; B D between-cluster.

clustering compared to the population-generating model. For the BIC, we provide the absolute

difference in the population and misspecified quantities because common practice uses the

differences in BIC across models as a means of model choice.2

Results of Simulation Study

Tables 1, 2, and 3 show that the absolute difference in BIC between the true model and

misspecified model is mostly related to the size of the ICC. It should be noted that although

the differences in BIC are quite large in practical terms, when examined as a percentage of

the population value, the bias is not very large, never exceeding 10%. The tables of percentage

bias in BIC are available on request.

In addition to sensitivity of the BIC in terms of the size of the ICCs, we also observe

differences due to cluster size. In particular, absolute differences in the BIC are noticeably

larger in cases of small between-cluster size regardless of the size of the ICCs. For example,

in Table 1, for the 15 W/80 B and .4/.4 ICC conditions, we find that the absolute difference

in the BIC is 405, compared to 504 in the 80 W/15 B condition. This pattern holds across all

ICC, cluster size, and class proportion conditions of the study.

Tables 4, 5, and 6 show that the R2
entropy is consistently underestimated when ignoring

the multilevel structure of the data and the underestimation worsens with increasing size of

the ICC. Because higher values of the R2
entropy imply better prediction of class membership,

this result suggests that ignoring multilevel structure in the latent class model worsens the

prediction of latent class membership. However, the degradation in prediction of latent class

2Percentage bias is defined as the percentage under- or overestimation of the measure for the misspecifed model

relative to the population model and is calculated as 100 � (misspecified model � population model)/(population

model).
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CLUSTER EFFECTS IN LCA 533

TABLE 2

Difference in Bayesian Information Criterion: Class Proportions (.70, .20, .10)

ICC2 ICC2 ICC2

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

15 W/80 B 20 W/60 B 30 W/40 B

0.0 �13 0 24 65 106 �13 2 35 68 126 �13 7 45 85 129
0.1 28 70 99 118 155 38 66 107 137 160 42 81 120 145 178

ICC1 0.2 89 115 135 156 183 101 133 137 167 191 120 138 166 186 194

0.3 150 161 176 201 206 169 179 197 212 213 189 212 203 235 234
0.4 200 206 212 221 224 222 213 236 235 239 251 230 239 248 235

40 W/30 B 60 W/20 B 80 W/15 B

0.0 �13 11 48 98 145 �14 13 59 101 171 �13 18 63 115 160
0.1 52 96 128 167 201 57 105 132 156 208 65 95 130 183 207

ICC1 0.2 130 153 174 195 215 134 159 197 202 221 141 154 172 195 233

0.3 189 208 208 230 232 221 228 239 249 256 206 186 226 237 225
0.4 265 226 255 266 270 265 284 269 259 267 265 258 271 258 254

Note. ICC D intraclass correlation coefficient; W D within-cluster; B D between-cluster.

membership is partly a function of the size of the ICCs relative to the latent class membership

proportion. Unlike the findings for the BIC, bias in R2
entropy does not appear to be a function

of the cluster size conditions.

In each cluster size condition and across each latent class size distribution, the lowest and

highest biases were observed in the ICC1 D ICC2 D 0:0 and ICC1 D ICC2 D 0:4 cases,

respectively. Interestingly, the biases are not symmetric with respect to ICCs. That is, for

a fixed class size and fixed cluster sizes, the condition in which .ICC1; ICC2/ D .0:0; 0:4/

TABLE 3

Difference in Bayesian Information Criterion: Class Proportions (.20, .70, .10)

ICC2 ICC2 ICC2

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

15 W/80 B 20 W/60 B 30 W/40 B

0.0 �13 11 54 91 141 �13 18 68 110 154 �13 26 72 124 167
0.1 4 55 83 127 156 7 58 94 131 165 11 69 108 143 177

ICC1 0.2 39 77 116 129 158 48 83 126 135 190 58 96 134 151 193

0.3 77 99 110 148 163 91 110 124 155 179 111 127 154 173 193
0.4 118 131 162 161 184 139 145 166 181 210 151 164 192 184 220

40 W/30 B 60 W/20 B 80 W/15 B

0.0 �13 29 82 141 197 �13 31 80 149 201 �13 42 101 153 211
0.1 20 68 124 155 193 19 80 132 177 210 23 84 124 160 198

ICC1 0.2 63 101 143 165 188 72 121 137 160 219 76 125 144 163 230
0.3 119 146 146 166 204 112 154 161 188 202 126 156 166 194 215
0.4 168 156 208 212 223 171 183 205 220 225 196 169 220 193 255

Note. ICC D intraclass correlation coefficient; W D within-cluster; B D between-cluster.
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534 KAPLAN AND KELLER

TABLE 4

Percentage Bias in Entropy-R2 ; Class Proportions (.33, .33, .33)

ICC2 ICC2 ICC2

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

15 W/80 B 20 W/60 B 30 W/40 B

0.0 0 �3 �6 �9 �12 0 �3 �6 �10 �13 0 �4 �7 �10 �13
0.1 �2 �6 �9 �10 �13 �2 �6 �9 �11 �14 �2 �7 �10 �12 �14

ICC1 0.2 �4 �8 �10 �12 �13 �5 �9 �10 �12 �14 �5 �9 �11 �13 �15

0.3 �7 �10 �11 �12 �14 �7 �11 �11 �13 �14 �8 �10 �12 �13 �15
0.4 �9 �11 �13 �13 �14 �9 �11 �13 �14 �14 �10 �12 �13 �14 �14

40 W/30 B 60 W/20 B 80 W/15 B

0.0 0 �4 �7 �11 �14 0 �4 �8 �12 �15 0 �5 �8 �11 �15
0.1 �3 �7 �10 �12 �15 �3 �7 �10 �12 �15 �3 �8 �10 �12 �15

ICC1 0.2 �5 �9 �11 �13 �14 �6 �9 �11 �13 �14 �6 �9 �11 �12 �14

0.3 �8 �11 �12 �13 �15 �8 �11 �12 �13 �15 �9 �11 �12 �14 �15
0.4 �10 �12 �13 �14 �15 �10 �12 �13 �14 �15 �10 �13 �13 �14 �15

Note. ICC D intraclass correlation coefficient; W D within-cluster; B D between-cluster.

does not necessarily display the same percentage bias in BIC or R2
entropy as the condition

in which .ICC1; ICC2/ D .0:4; 0:0/. These conditions differ in bias by as much as 5% in

R2
entropy and more than 1.5% (or an absolute difference of 122) in BIC. Moreover, these

asymmetries manifest themselves systematically in different magnitudes across the three latent

class size conditions, suggesting an interaction between latent class proportions and ICCs.

Further research is necessary to determine the effect of latent class proportions and response

probability distribution on measures of model and predictive adequacy.

TABLE 5

Percentage Bias in Entropy-R2 ; Class Proportions (.70, .20, .10)

ICC2 ICC2 ICC2

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

15 W/80 B 20 W/60 B 30 W/40 B

0.0 0 �1 �4 �7 �10 0 �2 �5 �7 �11 0 �2 �6 �8 �11
0.1 �2 �4 �6 �8 �9 �2 �4 �6 �8 �10 �3 �4 �6 �8 �11

ICC1 0.2 �4 �5 �7 �8 �10 �5 �6 �7 �8 �10 �5 �6 �7 �9 �11

0.3 �6 �7 �8 �9 �10 �7 �8 �9 �9 �10 �7 �8 �8 �9 �11
0.4 �9 �9 �9 �10 �10 �10 �9 �9 �10 �10 �10 �10 �10 �10 �11

40 W/30 B 60 W/20 B 80 W/15 B

0.0 0 �2 �5 �9 �12 0 �2 �5 �9 �12 0 �3 �6 �9 �13
0.1 �3 �4 �6 �9 �11 �3 �5 �6 �9 �12 �3 �5 �7 �8 �12

ICC1 0.2 �4 �6 �8 �9 �10 �6 �6 �8 �9 �11 �6 �6 �7 �9 �11
0.3 �8 �8 �8 �10 �11 �8 �8 �9 �9 �10 �9 �10 �8 �9 �10
0.4 �10 �9 �10 �11 �11 �10 �9 �10 �11 �11 �11 �10 �10 �10 �10

Note. ICC D intraclass correlation coefficient; W D within-cluster; B D between-cluster.
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TABLE 6

Percentage Bias in Entropy-R2 ; Class Proportions (.20, .70, .10)

ICC2 ICC2 ICC2

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

15 W/80 B 20 W/60 B 30 W/40 B

0.0 0 �3 �8 �11 �14 0 �4 �8 �11 �15 0 �5 �9 �12 �16
0.1 �1 �6 �9 �11 �14 �2 �6 �9 �12 �15 �2 �6 �10 �13 �17

ICC1 0.2 �5 �7 �10 �11 �14 �5 �8 �10 �12 �15 �5 �8 �11 �13 �15

0.3 �7 �9 �11 �13 �15 �7 �9 �11 �13 �15 �8 �10 �12 �14 �16
0.4 �10 �11 �13 �14 �15 �11 �12 �14 �14 �16 �11 �13 �13 �14 �15

40 W/30 B 60 W/20 B 80 W/15 B

0.0 0 �5 �8 �13 �17 0 �4 �9 �13 �16 0 �5 �10 �15 �17
0.1 �3 �7 �9 �13 �17 �3 �8 �9 �13 �17 �3 �8 �11 �13 �16

ICC1 0.2 �6 �9 �11 �13 �16 �6 �9 �11 �13 �16 �6 �9 �11 �14 �15

0.3 �9 �12 �11 �15 �15 �9 �12 �12 �14 �15 �10 �12 �12 �13 �15
0.4 �12 �13 �14 �15 �16 �11 �14 �14 �14 �16 �13 �14 �15 �15 �16

Note. ICC D intraclass correlation coefficient; W D within-cluster; B D between-cluster.

CONCLUSIONS

The results of a simulation study on the problem of cluster effects in the latent class model

were presented. The findings demonstrate the importance of accounting for multilevel structure

in the latent class model and are generally consistent with findings in the multilevel regression

modeling literature. Of the design conditions examined in this study, the most important factors

contributing to problems in model selection and classification adequacy are the size of the

intraclass correlation and the ratio of the within- to between-cluster sample size. In this sense,

our findings are in line with Mass and Hox (2004). In the context of LCA, our findings suggest

that distribution of class proportions interact with the size of the intraclass correlations and the

sample sizes in producing bias in these measures.

In specific terms, the influence of clustering on the BIC suggests that ignoring clustering

results in larger values of BIC, which in turn suggests that such a model would not be chosen

among a set of competing models. When cluster effects are large as measured by the ICC and

between cluster sample sizes are small, the absolute difference in BIC is even larger. In terms

of the R2
entropy measure, we find that the bias in this measure begins to exceed the 10% level

for an ICC of 0.20 or greater regardless of sample size or class proportion conditions. From

a practical viewpoint, ICCs of approximately 0.20 are commonly encountered in studies of

student achievement. Thus, our findings are particularly applicable in this setting.

In conclusion, although not every possible condition commonly encountered in applied

settings was examined, we view this study as a comprehensive and generalizable examination

into the problem of cluster effects in the latent class model. In the context of substantive

research, our results suggest that intraclass correlations in combination with the between and

within group sample sizes should be routinely examined when latent class analysis is proposed

for data arising from clustered sampling. It is hoped that these findings can inform model

selection in applications of latent class analysis with clustered samples.
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