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This article presents findings on the consequences of matrix sampling of context

questionnaires for the generation of plausible values in large-scale assessments.

Three studies are conducted. Study 1 uses data from PISA 2012 to examine

several different forms of missing data imputation within the chained equations

framework: predictive mean matching, Bayesian linear regression, and pro-

portional odds logistic regression. We find that predictive mean matching

accurately reproduces the marginal distributions of the missing context ques-

tionnaire data due to matrix sampling. Study 2 uses data from PISA 2006 to

examine the consequences of imputing context questionnaire data in terms of

the generation of plausible values. We find that imputing context questionnaire

data with predictive mean matching and using the imputed data to produce the

plausible values yields very close approximation of the original marginal dis-

tributions but leads to underestimation of the correlation structure of the con-

text questionnaire items. Study 3 examines imputation and plausible values

generation within a partially balanced incomplete block design. We find that

imputation within this design accurately reproduces the original marginal

distributions and retains the correlation structure of the data. Implications for

context questionnaire development are discussed.
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A common concern facing most national and international large-scale assess-

ments is the desire to present as much content as possible without overburdening

the participants in the survey. For large-scale assessments that test the so-called

‘‘cognitive’’ outcomes, such as the National Assessment of Educational Progress

(NAEP), the Program for International Student Assessment (PISA), the Program

for the International Assessment of Adult Competencies (PIAAC), the Trends in

International Mathematics and Science Study (TIMSS), and the Progress in

Reading and Literacy Study (PIRLS), the method for increasing cognitive con-

tent is through the implementation of multiple matrix sampling designs. A classic
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study of multiple matrix sampling designs can be found in Shoemaker (1973)

who provided procedural guidelines and computational formulas for a variety

of matrix sampling designs. More recently, Frey, Hartig, and Rupp (2009) pro-

vided a didactic discussion of matrix sampling designs carefully outlining theo-

retical and practical implications for a variety of different designs. Gonzalez and

Rutkowski (2010) also outlined a variety of matrix sampling designs and showed

the impact of these designs on item and person parameter recovery in a simula-

tion study of a large-scale assessment.

In addition to the cognitive assessments, policy makers and researchers alike

have begun to focus attention on the context questionnaires (CQs) of large-scale

assessments. CQs provide important exogenous and mediating variables for

models predicting cognitive outcomes, and these variables have become impor-

tant outcomes in their own right—often referred to as ‘‘noncognitive outcomes.’’

Given that policy priorities still focus largely on the cognitive side of the assess-

ment, there are only three ways to expand the content of the CQ: (a) increase the

assessment time for the CQ, (b) provide ‘‘menus’’ of optional questionnaires and

let countries decide which questionnaires they wish to administer, or (c) matrix

sample the CQ in a manner similar to the design of the cognitive instrument. At

present, option (a) is simply not feasible. Option (b) is still possible, but it would

make cross-country comparisons of noncognitive outcomes difficult. The techni-

cal consequences of option (c) form the focus of this article.

The purpose of this article is to examine the implications of matrix sampling of

the CQ with respect to the generation of the plausible values (PVs) of the cognitive

assessment. Our article consists of three interrelated studies. Study 1 presents a

comparison of three imputation methods using data from PISA 2012 (Organiza-

tion for Economic Cooperation and Development [OECD], 2013). We chose PISA

2012 because this was the first cycle of PISA and the only large-scale assessment

to date that implemented a matrix sampling of the CQ. The goal of Study 1 is to

provide empirical evidence of the differences among imputation methodologies

and to choose an imputation methodology for the remaining studies.

In Study 2, we use data from PISA 2006 (OECD, 2006) to recreate the matrix

sampling design used in PISA 2012 and to study the impact of matrix sampling

and imputation of the CQ with respect to the generation of the PVs. Study 2 pro-

vides a partial replication of a recent study by Adams, Lietz, and Berezner (2013)

described in more detail below.

In Study 3 using complete data from PISA 2006, we present an alternative

matrix sampling design to the one used in PISA 2012 to examine how it might

preserve the correlation structure among the CQ items and the PVs.

The organization of this article is as follows. In the next section, we describe

the imputation methodology to be used in this article. This is followed by a

description of how the imputation methodologies will be validated. After this,

we describe the methods and results of Studies 1, 2, and 3, respectively. This arti-

cle closes with a discussion of additional research that needs to be conducted as
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well as operational considerations that need to be considered when deciding to

implement CQ rotation.

Imputation Methodology

For this article, we will concentrate on issues related to the imputation of the

CQ. In practice, this would then be followed by the use of the conditioning model

for estimating latent proficiency distributions based on the fully imputed data

(see Mislevy, 1991; Mislevy, Beaton, Kaplan, & Sheehan, 1992; von Davier,

2013). For imputation of the rotated CQ, a choice must be made regarding the

imputation algorithm that would be used to fill in the missing data, and it is

important to note that not all imputation algorithms provide the same results.

As a consequence, validity criteria must be established.

We will describe three approaches within the fully conditional specification

(chained equations) framework of missing data theory (van Buuren, 2012). These

approaches follow a general Bayesian framework for imputation based on the fun-

damental work of Rubin (1987). Specifically, we will example predictive mean

matching for all items and then Bayesian linear regression under the normal model

for continuous items and proportional odds logistic regression for categorical items.

Chained Equations

The chained equations approach uses a univariate regression model consistent

with the scale of the variable with missing data to provide predicted values of the

missing data given the observed data. Once a variable of interest is filled in, that

variable, along with the items for which there is complete data, is used in a

sequence to fill in another variable. Once the sequence is completed for all items

with missing data, the posterior distribution of the regression parameters is

obtained via Gibbs sampling, and the process is started again. The algorithm can

run these sequences simultaneously m number of times obtaining m imputed data

sets. This is the method used in the R program ‘‘mice’’ (van Buuren & Groothuis-

Oudshoorn, 2010), which we will use for our analyses below.

Predictive Mean Matching

Let Xobs be the predictors with observed data and let Xmiss be the predictors

with missing data on the target variable y.

1. Obtain b̂ based on Xobs and let ~s2 be a draw based on the deviations

ðyobs � Xobsb̂Þ0ðyobs � Xobsb̂Þ=~g, where ~g is a draw from a w2 distribution.

2. Draw ~b ¼ b̂þ ~s~z1V 1=2, where V 1=2 is the square root of the Cholesky decompo-

sition of the cross-product matrix S ¼ X
0
obsXobs, and z1 is p-dimensional vector of

Nð0; 1Þ random variates.

3. Calculate ~ηði; jÞ ¼ jXobs;½i�b̂� Xmiss;½j�~bj, where i ¼ 1; 2; . . . ; n1 and

j ¼ 1; 2; . . . ; n0.
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4. Construct n0 sets Wj containing d candidate donors from yobs such that
P

d
~ηði; jÞ is

minimum. Break ties randomly.

5. Randomly draw one donor ij from Wj for j ¼ 1; 2; . . . ; n0.

6. Impute ~yj ¼ yij , for j ¼ 1; 2; . . . ; n0.

Bayesian Regression Imputation

Bayesian imputation under the normal model proceeds much like predictive

mean matching.

1. Obtain b̂ based on Xobs and let ~s2 be a draw based on the deviations

ðyobs � Xobsb̂Þ0ðyobs � Xobsb̂Þ=~g, where ~g is a draw from a w2 distribution.

2. Draw ~b ¼ b̂þ ~s~z1V 1=2 as before.

3. Calculate the imputed value ~y as ~y ¼ Xmiss
~bþ ~z2 ~s, where z2 is a j ¼ 1; 2; . . . ; n0

vector of Nð0; 1Þ random variates for those with missing data on y.

4. A new ~y is obtained by drawing a new ~s2. This can be repeated m times.

Proportional Odds Logistic Regression

For PISA, most of the items in the CQ are ordered categorical (e.g., Likert

scales). We wish to take into account the correct probability model, and so for

ordered categorical items, we use the proportional odds logistic regression

model. The proportional odds logistic regression approach is similar to Bayesian

imputation except the following:

1. obtain b̂ by iteratively reweighted least squares,

2. obtain ~p ¼ 1=
�

1þ expð�Xmiss
~bÞ
�

, and

3. use the cumulative logit to assign K categorical responses:

log
pð~yj � kÞ
pð~yj > kÞ

" #
¼ log

pð~yj � kÞ
1� pð~yj � kÞ

" #
¼ log

~p1;j þ . . . þ ~pk;j

~pkþ1;j þ . . . þ ~pK;j

" #
:

Validating Imputation Methods

For any rigorous study of missing data imputation, validity criteria must also

be established. For this article, we follow the work of Rässler (2002) on levels of

validation for imputation procedures. We discuss two of these levels—preserving

marginal distributions and preserving correlation/covariance structure—that are

directly relevant to concerns about matrix sampling and PV generation.1 These

levels of validity (described next) have also been examined in the context of sta-

tistical matching of two large-scale education surveys—PISA and the OECD

Teaching and Learning International Survey—TALIS (Kaplan & McCarty,

2013; OECD, 2009a).
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Preserving Marginal Distributions

The lowest level of validity and a minimum requirement for statistical match-

ing is that the marginal distributions of the individual variables in the original

surveys be preserved after imputation. Because the omitted responses in the

rotated part of the CQ are missing completely at random (MCAR), we can com-

pare the marginal distributions of the imputed responses to the marginal distribu-

tion of the observed responses. In this article, we examine the preservation of the

marginal distributions of the CQ scales in Study 1. In Studies 2 and 3, we exam-

ine the impact of the imputation of the CQ on preserving the marginal distribu-

tions of the PVs.

Preserving Covariance/Correlation Structures

In Rässler’s work, preserving the covariance/correlation structure was focused

on data fusion problems. In this article, we will examine the preservation of the

covariance/correlation structure among the variables in a different way. Specif-

ically, we compute the pairwise correlations among items within each rotated

form. Due to the random assignment of questionnaire forms to students, we

expect the correlation to be similar across forms. Study 3 will examine an alter-

native matrix sampling design in terms of how it preserves correlation structure

among the scales.

Study 1: Imputation Using the PISA 2012 Assessment Design

The 2012 cycle of PISA (OECD, 2014) implemented a matrix sampling

design for the CQ. The design consisted of three forms. The forms contained a

systematic combination of clusters.2 Each form contained a common part and

a rotated part. Each form contained two rotated clusters of questions so that there

was an overlapping rotation cluster between any two of the rotated forms. Table 1

shows the PISA 2012 CQ matrix sampling design. For detailed information on

the partition of questionnaire items into clusters, please refer to Table 6.4 in the

PISA 2012 assessment and analytical framework (OECD, 2013, p. 194).

The PISA 2012 CQ design resulted in students missing one third of CQ items.

Thus, without listwise deletion it would not be possible to jointly analyze the data

from the questionnaires. Because the forms were randomly assigned to students,

the missing data due to the design have the mechanism of MCAR. However,

when the missing data are not MCAR (e.g., the random assignment was not per-

fectly implemented), results from listwise deletion may be biased. Instead, mul-

tiple imputation (MI) can produce unbiased results under MCAR or missing at

random (MAR) (Enders, 2010; Little & Rubin, 2002; Schafer, 1997).

In this study, we compare the three imputation methods described in the pre-

vious section: predictive mean matching (pmm), Bayesian imputation under the

normal model (norm), and proportional odds logistic regression (polr) model
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using U.S. data from PISA 2012. In order to impute all the questionnaire data

which contain both numeric items and categorical items, we use either pmm

alone or use the combination of norm and polr.

We implemented two imputation procedures. In the first procedure, we

imputed all the questionnaire items using pmm. The items in the imputation

model are school ID, questionnaire form ID, and all the questionnaire items

including common part and clusters. In the second imputation procedure, we

imputed numeric items using norm and ordered categorical items using polr.

However, due to the limitation that polr is not able to impute a large amount

of categorical items (e.g., more than 70 items), especially with more than four

levels in each categorical item, we had to partition the items in the scales into

three sets which were imputed separately. The three sets of items correspond

to Cluster 1, Set 2, and Set 3 in the PISA 2012 CQ rotation design. We partition

the items into these three clusters because the number of items in each cluster is

not too large for polr, and by design each set of questions with similar themes can

be imputed together. The imputation models for each cluster contain question-

naire form ID and the questionnaire items in the corresponding question set.

We had to exclude the school ID variable from the imputation model because

it contains 162 levels which are too many for polr to impute with other items

together. We conducted both a single imputation and five MIs for the two proce-

dures. All the missing data which includes missing by design as well as item

missing data were imputed using the ‘‘mice’’ package (van Buuren &

Groothuis-Oudshoorn, 2010) in R (R Core Team, 2014). The mice package con-

tains, among many other imputation methods, pmm, norm, and polr. All R codes

for Studies 1 through 3 are available at http://bise.wceruw.org/publications.html.

Results of Study 1

Recall that Rässler’s (2002) minimum requirement for imputation validity is

preserving the observed marginal distributions. Thus, in order to assess how well

the three methods reproduce the originally observed marginal distributions of the

CQ items, we compare the item densities based on the imputed values with the

TABLE 1.

PISA 2012 CQ Matrix Sampling Design

Form A Form B Form C

Common part Common part Common part

Cluster 1 Cluster 1 Cluster 1 missing

Cluster 2 Cluster 2 missing Cluster 2

Cluster 3 missing Cluster 3 Cluster 3

Note. CQ ¼ context questionnaire.
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densities based on the original values. Under the assumption of MCAR, we

expect the densities based on the imputed values to be very close to the densities

based on the originally observed values. To present the density plots, we chose 4

items that are representative of items that come from each of the three question

sets and of different types of items. Similar results hold for the remaining items.

The Item ST48Q01 from the construct math intentions (in Question Set 1) is a

binary item. The Item ST57Q01 from out-of-school study time (in Question Set

2) is a numeric variable. The Item ST37Q01 from math self-efficacy (in Question

Set 1) and the Item ST80Q01 from cognitive activation (in Question Set 3) are

ordered categorical items with four levels.

Figures 1 and 2 display the kernel density plots of the 4 items using pmm for

single imputation and five imputations, respectively. Note that the plots for the

categorical variables are smoothed version of histograms. The coding of the dis-

crete values is noted under the figures. Figures 3 and 4 show the kernel density

plots of the 4 items using polr or norm for single imputation and five imputations.

Comparing Figures 1 and 2 with Figures 3 and 4, all the densities of imputed val-

ues using pmm are closer to the densities of the observed values compared to

using polr and norm. For the numeric variable, out-of-school study time, norm

did not reproduce the observed marginal density which is highly right skewed.

Additionally, the method norm can generate values outside the data range. For

this analysis, we used the ‘‘squeeze’’ function in the ‘‘mice’’ package to ensure

positive imputations for out-of-school study time. Regardless, we conjecture that

the result for norm is likely due to the fact that norm assumes a normal model,

and out-of-school study time is likely nonnormal in the population.

For assessing how well the methods preserve the correlations, Rässler’s

(2002), third level of validity, we compute the pairwise correlations among the

3 items ST37Q01 (in Question Set 1), ST57Q01 (in Question Set 2), and

ST80Q01 (in Question Set 3) within each rotated form. Due to the random

assignment of forms to students, we expect the correlation between the 2 items

to be similar across forms. For example, Form A has both Items ST37Q01 and

ST57Q01, so we are able to compute the observed correlation between the 2

items within Form A. However, in Form B, Item ST37Q01 is not observed, so

we compute the correlation of the imputed values of Item ST37Q01 with the

observed values of Item ST57Q01 within Form B. The same with Form C, Item

ST57Q01 is not observed, so we compute the correlation of the imputed values of

Item ST57Q01 with the observed values of Item ST37Q01 within form C. Table

2 shows the pairwise correlations among the 3 items using pmm with single

imputation and with five imputations.

Compared to the observed correlations, all of the correlations that involve

imputed values are attenuated; however, pmm preserved the direction of all the

correlations. With five imputations, the correlations are only slightly better pre-

served than using a single imputation. Table 3 shows the pairwise correlations

among the 3 items using polr and norm with a single imputation and with five
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imputations. Here, we can see that all the correlations are strongly attenuated

toward zero. The directions of the correlations are not preserved, and the results

from five imputations are not an improvement over using a single imputation.

The results of Study 1 suggest that pmm does a better job of preserving the

marginal densities and correlations than polr and norm. In terms of operational

limitations, pmm is more flexible because it can be applied to all types of items

and it is able to impute missing data on many items at once. The polr method is

restricted by the total number of levels of all the categorical items in the impu-

tation model, while norm assumes normality, has restrictions on the distribution

of numeric scales, and requires postprocessing of the imputed values to ensure

they stay in the plausible range. All three procedures do an inadequate job of

FIGURE 1. Kernel density plots of imputed and observed values for Items ST48Q01 (1 ¼
courses after school are maths and 2 ¼ courses after school are test language) and

ST57Q01 using predictive mean matching (pmm) under single imputation and five

imputations.
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reproducing observed correlations. For these reasons, we chose pmm as our

imputation method in the following studies.

Study 2: Simulation of Matrix Sampling and Imputation Using PISA 2006

In Study 2, we focus our attention on the main issue in this article—namely

the consequences of CQ rotation and imputation on PV generation. We study this

problem under three different design conditions using the U.S. data from PISA

2006 (OECD, 2006). The first design condition uses the original questionnaire

without rotation and generates the PVs according to the same procedures

described in the PISA 2006 technical report (OECD, 2009).

FIGURE 2. Kernel density plots of imputed and observed values of Items ST37Q01 (1 ¼
very confident to 4 ¼ not at all confident) and ST80Q01 (1 ¼ always or almost always to

4 ¼ never or rarely) using predictive mean matching (pmm) under the single imputation

and five imputations.
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The second design condition generates PVs by conditioning on the matrix

sampled questionnaire without imputation. This approach replicates the Adams

et al. (2013) paper using a joint conditioning approach with two questionnaire

forms. In this design, three mutually exclusive clusters of scales in the question-

naire are created. The first cluster, the common part, was assigned to both ques-

tionnaire forms. The remaining clusters are assigned to each of the questionnaire

forms, respectively. Thus, each of the questionnaire forms contains the common

part of the scales and one of the two rotated clusters. The scales are allocated to

the clusters according to the principle that the average correlation between the

scales from Set 1 with the science performance is similar with the average cor-

relation between the scales from Set 2 with the science performance. PISA 2012

also implemented a similar rotation design but with three clusters instead of two.

FIGURE 3. Kernel density plots of imputed and observed values of Items ST80Q01 (1 ¼
always or almost always to 4 ¼ never or rarely) and ST57Q01 using polr or norm under

single imputation and five imputations.
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The third design condition uses a matrix sampled questionnaire with pmm

imputation and generates PVs conditioned on the matrix sampled questionnaire

with all missing data in the questionnaire imputed. This matrix sample design is

the same as Adams et al. (2013) described above. All the missing data are

imputed using pmm comparing the results of a single imputation to five MIs.

Note that in contrast to Study 1, in order to replicate the Adams et al. rotation

design, imputation is conducted on the scale level.

Procedure

In this section, we describe the procedures for the approach of rotation alone

and the approach of rotation with imputation. The procedures for scaling

FIGURE 4. Kernel density plots of imputed and observed values of Items ST37Q01 (1 ¼
very confident to 4 ¼ not at all confident) and ST80Q01 (1 ¼ always or almost always to

4 ¼ never or rarely) using polr under single imputation and five imputations.
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cognitive data and generating PVs were done using ‘‘TAM’’ package (Kiefer,

Robitzsch, and Wu (2014; see also Adams, Wilson, & Wu, 1997; Adams &

Wu, 2007) in the R software environment (R Core Team, 2014).

Creating the rotated questionnaire. Table 4 shows the scales contained in each of

the two questionnaire forms. From the table, we can see that all students have

data for the common part. One half of the students who were assigned to Form

A have data from Cluster 1 and the other half of students have data from Cluster

2. In order to simulate the matrix sampling design, we simulate the case that one

half of the students were randomly assigned to Form A and the other half to Form

B. We partition the students into two subsets by randomly sampling one half of

students within each school to the first set and assign them to Form A. The rest of

students are assigned to Form B. In other words, data from Set 2 are deleted for

those students who receive Form A. Similarly, data from Set 1 are deleted for

those students who receive Form B.

TABLE 2.

Pairwise Correlations Among Items ST37Q01, ST57Q01, and ST80Q01 Within Each

Booklet Using pmm Under the Single Imputation and Five Imputations

Correlations

pmm 1 pmm 5

Form A Form B Form C Form A Form B Form C

ST37Q01 with ST57Q01 �0.21 �0.12 �0.11 �0.21 �0.14 �0.13

ST37Q01 with ST80Q01 0.02 0.15 0.13 0.08 0.15 0.11

ST57Q01 with ST80Q01 �0.03 �0.04 �0.05 �0.02 �0.03 �0.05

Note. Boldface numbers are the correlations between the 2 observed items within the same form. The

correlations under pmm 5 are the averaged correlations across five imputations. pmm ¼ predictive

mean matching.

TABLE 3.

Pairwise Correlations Among Items ST37Q01, ST57Q01, and ST80Q01 Within Each

Form Using polr and norm Under the Single Imputation and Five Imputations

Correlations

polr and norm 1 polr and norm 5

Form A Form B Form C Form A Form B Form C

ST37Q01 with ST57Q01 �0.21 �0.03 0.02 �0.21 �0.01 0.01

ST37Q01 with ST80Q01 0.03 0.15 �0.01 0.01 0.15 0.00

ST57Q01 with ST80Q01 �0.03 �0.01 �0.05 �0.01 0.01 �0.05

Note. Boldface numbers are the correlations between the 2 observed items within the same form. The

correlations under polr and norm 5 are the averaged correlations across five imputations.
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TABLE 4.

Adams et al. (2013) Matrix Sampling Design for PISA 2006 Simulation Study

Form A Form B

Common part

Scale name Scale description

PROGN Country study program

GRADE Grade

AGE Age of the student

GENDER Gender

BMMJ Occupation of mother

BFMJ Occupation of father

BSMJ Occupation of self at 30

MISCEDN Educational level of mother

FISCED Educational level of father

IMMIG Immigration status

LANG Language at home

DEFFORT Difference in effort

CULTPOSS Classic literature, books of poetry, works of art

HEDRES Study desk, quiet place to study, computer for school work, educational

software, own calculator, books to help with school work, dictionary

WEALTH Own room, Internet link, dishwasher, DVD/VCR, three country-specific

wealth items, number of cellphones, TVs, computers, cars

Cluster 1 Cluster 2

CARINFO Student information on

science-related careers

ENVOPT Environmental optimism

CARPREP School preparation for

science-related careers

ENVPERC Perception of environmental

issues

ENVAWARE Awareness of

environmental issues

GENSCIE General value of science

INSTSCIE Instrumental motivation in

science

INTSCIE General interest in learning

science

JOYSCIE Enjoyment of science PERSIE Personal value of science

SCIEFUT Future-oriented science

motivation

RESPDEV Responsibility for sustainable

development

SCINTACT Science teaching:

interaction

SCAPPLY Science teaching: focus on

applications or models

SCINVEST Science teaching: student

investigations

SCHANDS Science teaching: hands-on

activities

SCSCIE Science self-concept SCIEACT Science activities

SCIEEFF Science self-efficacy

Note. HIGHCONF, INTCONF, PRGUSE, and INTUSE were excluded from the design because of no

U.S. data in these four scales.
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Impute missing data in the rotated questionnaire. We impute the questionnaire

data under the Adams et al. (2013) rotation design using pmm in the ‘‘mice’’

package (van Buuren & Groothuis-Oudshoorn, 2010). The items included in the

imputation model are all the items in Table 4, school ID, and form ID. The com-

plete questionnaire data after imputation is then prepared for generating the PVs

as described subsequently.

Preparing the conditioning items. The conditioning items for scaling cognitive

data include direct conditioning items and indirect conditioning items. The direct

conditioning items are form ID (deviation coded), school ID (dummy coded), and

gender (dummy coded). Indirect conditioning items include all the other items

listed in Table 4. Categorical items in the indirect conditioning items are dummy

coded. For the rotation with imputation condition, after the imputation procedure

we have the complete questionnaire data which can be directly prepared as con-

ditioning items. However for the approach of rotation alone, in order to deal with

the missing values in the questionnaire, missing indicators are created for all the

items and missing values in continuous items are replaced with means.

In order to reduce the dimensionality of the conditioning items, a principal

components analysis is performed on the indirect conditioning items. The com-

ponents that account for 95% of the total variance in the indirect conditioning

items are then used together with the direct conditioning items for scaling.

Scaling the cognitive data and drawing PVs. The item response model for scaling

the cognitive data is the mixed coefficients multinomial logit model (Adams &

Wu, 2007). A five-dimensional scaling model which is composed of one reading,

one science, one mathematics, and two attitudinal dimensions was used in this

simulation study. Due to the fact that U.S. data do not contain the reading assess-

ment, we implemented a four-dimensional scaling model. In the ‘‘TAM’’ pack-

age, we apply an option that yields a multidimensional one parameter partial

credit model with ConQuest parametrization (Adams, Wu, & Wilson, 2015).

Before running the partial credit model, we first fixed the item parameters at

the international values given in Appendix 1 of PISA 2006 technical report

(OECD, 2009). Second, we specified the loading structure of items on dimen-

sions. Third, we fixed to zero the regression coefficients between mathematics

performance and those form contrasts that yield forms without a mathematics

test. Finally, we specified a matrix of covariates for the latent regression condi-

tioning model. The IRT models are the same for the three approaches except for

the conditioning items. We use the ‘‘TAM’’ program to draw five normally

approximated PVs for each of the four dimensions.

Results of Study 2

In Figure 5a, we display the kernel density plot of the first science PV under

the no rotation design condition and the density of the first PV (PV1SCIE) in the
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original questionnaire data. We see that the two densities almost overlap com-

pletely. This plot validates our procedure of generating PVs using the ‘‘TAM’’

package. We then compare the PVs under the two other approaches with the

observed PV1SCIE. Figure 5b shows the comparison of the density plots of the

first PV under the Adams et al. (2013) rotation design. Figure 5c and d displays

the comparisons of the kernel density plots of the first PV under the approach of

rotation with single imputation and five imputations, respectively. We can see

that the densities of the first PV under all three approaches are very close to the

original PV1SCIE. Table 5 provides the descriptive statistics for the densities

shown in the plots. The results show that the PVs generated under the three

approaches replicate PV1SCIE very well. Thus, we found no evidence of bias

in the PVs using rotation alone or with imputation for U.S. data.

FIGURE 5. Kernel density plots of the first plausible value under the three approaches

compared to the density of the first plausible values in the original data.
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For the approach of matrix sampling with imputation, it is important that

the questionnaire data maintain the original covariance structure after imputa-

tion. Thus, we calculate the pairwise correlations among the rotated sets of

items after single imputation using pmm and compare them with the correla-

tions calculated using the original data (not matrix sampled). We also com-

pared the pairwise correlations between the imputed items and original

items with the first PVs on science. The horizontal axis of Figure 6 displays

the distribution of the difference between the correlations after imputation and

the original correlations. We see that the correlations after imputation are not

well preserved. We find that 40% of the correlations (in total 190 correlations)

have more than 0.1 absolute difference compared to the original correlations.

Nine correlations are even more extreme, exceeding 0.5 absolute difference.

Although we did not find a pattern indicating why the correlations among

some items are more biased than others, the amount and magnitude of the

correlation difference deserve our attention. Furthermore, 85% of the correla-

tions have negative difference indicating that the correlations generated under

the Adams et al. (2013) matrix sampling design with imputation are strongly

attenuated; the number of negative correlation differences is far more than the

number of positive correlation differences. This result is consistent with the

attenuation of the correlations in Study 1. Finally, for the correlations between

the PVs and items, 5 correlations out of 19 exceed 0.1 absolute difference. Of

19 correlations, 14 have negative difference. In the following study, we suggest

TABLE 5.

Descriptive Statistics on the First Plausible Value of the Science Dimension Generated

Under Three Conditions

Mean SD 10% 25% 75% 90%

No rotation 489.16 106.13 351.21 413.23 565.52 626.39

Adams et al. (2013) rotation 488.97 106.26 351.20 412.70 564.19 626.81

Adams et al. (2013) rotation (pmm 1) 489.67 107.43 350.74 410.56 567.69 628.89

Adams et al. (2013) rotation

(pmm 1_5)

489.68 107.00 350.23 412.73 566.48 629.04

Adams et al. (2013) rotation

(pmm 2_5)

489.05 108.04 348.54 409.68 566.65 628.56

Adams et al. (2013) rotation

(pmm 3_5)

488.60 107.27 348.53 410.64 565.91 628.29

Adams et al. (2013) rotation

(pmm 4_5)

489.43 107.33 349.29 412.45 565.65 627.44

Adams et al. (2013) rotation

(pmm 5_5)

489.57 107.02 353.08 410.95 565.28 628.41

Note. pmm 1_5 is the first imputation of the five imputations using pmm. pmm ¼ predictive mean

matching.
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a different matrix sampling design that may help better preserve the correlation

structure among the items and PVs.3

Study 3: Alternative Matrix Sampling Design Using PISA 2006

In this simulation study, we examine the properties of a partially balanced

incomplete block matrix sampling design (PBIB) of the CQ and its impact

on PV generation. In this design, we keep the common part of questionnaire

items the same as in the Adams et al. (2013) design. However, here we arrange

the 19 scales according to a partially balanced incomplete block design with

three associate classes (Montgomery, 2012). The distribution of the associate

classes for each pair of scales is shown in Table 6. For example, we find that

Scales 1 and 3 appear together 3 times, Scales 1 and 2 appear together 4 times,

and Scales 1 and 7 appear together 5 times. The design (without the common

part) is shown in Table 7, where we see that the 19 scales (excluding the com-

mon part) are arranged in 19 clusters.
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FIGURE 6. Comparison of bias in correlations between the Adams et al. (2013) design

and partially balanced incomplete block matrix sampling design (PBIB) design.
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In order to simulate the partially balanced incomplete design with U.S. data

from PISA 2006, we randomly assign the clusters to the students and delete the

data that students should not have due to the design shown in Table 6. Then we

impute the questionnaire data using pmm with single imputation and MIs. The

items included in the imputation model are school ID, block ID, the common

items, and the 19 rotated items. We then scale the cognitive items and draw PVs

as described in Study 2.

Results of Study 3

Figure 7 compares the kernel density plot of the first PV with one and five

imputations under the PBIB rotation design to the density of the first PVs

PV1SCIE in the data set. The overlapping densities suggest that there is no evi-

dence that the PBIB design produces bias when generating the PVs using the U.S.

data. The vertical axis of Figure 6 shows the distribution of the differences in the

correlations under the PBIB design. We note that the distribution of the differ-

ences is much narrower compared to the distribution of the differences under the

Adams et al. design. We find that among the items themselves, no correlation

exceeds 0.1 in absolute difference compared to the original correlations.

TABLE 6.

Partially Balanced Incomplete Block Design With 3, 4, and 5 Associate Classes

Scales Scales

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 9 4 3 4 4 4 5 3 4 4 3 4 4 4 4 5 3 5 5

2 4 9 3 5 4 4 4 4 4 4 3 4 4 4 5 4 4 4 4

3 3 3 9 3 4 4 4 5 5 3 5 5 4 4 4 4 4 4 4

4 4 5 3 9 4 4 3 4 4 4 4 4 4 4 5 4 4 4 4

5 4 4 4 4 9 5 4 4 4 4 4 4 4 4 4 4 4 4 3

6 4 4 4 4 5 9 4 4 4 4 4 4 4 3 4 3 4 4 5

7 5 4 4 3 4 4 9 4 4 4 4 3 5 4 4 4 4 4 4

8 3 4 5 4 4 4 4 9 4 5 5 4 4 4 3 4 4 4 3

9 4 4 5 4 4 4 4 4 9 4 4 3 4 4 4 4 4 4 4

10 4 4 3 4 4 4 4 5 4 9 4 5 4 4 4 4 4 4 3

11 3 3 5 4 4 4 4 5 4 4 9 4 4 4 4 4 4 4 4

12 4 4 5 4 4 4 3 4 3 5 4 9 4 4 4 4 4 4 4

13 4 4 4 4 4 4 5 4 4 4 4 4 9 4 3 4 4 4 4

14 4 4 4 4 4 3 4 4 4 4 4 4 4 9 4 4 4 4 5

15 4 5 4 5 4 4 4 3 4 4 4 4 3 4 9 4 4 4 4

16 5 4 4 4 4 3 4 4 4 4 4 4 4 4 4 9 4 4 4

17 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 4 5

18 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 3

19 5 4 4 4 3 5 4 4 3 4 4 4 5 4 4 5 3 9
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TABLE 7.

Partially Balanced Incomplete Block Design for the 19 Questionnaire Scales

Cluster ID Scales

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0

2 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0

3 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0

4 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1

5 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0

6 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1

7 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1

8 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0 0

9 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1

10 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0

11 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1

12 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1

13 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 1 0

14 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1

15 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0

16 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1

17 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0

18 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0

19 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1

Note. A ‘‘1’’ denotes the presence of the scale in the cluster, ‘‘0’’, other size.

FIGURE 7. Kernel density plots of the first plausible value under the partially balanced

incomplete block matrix sampling design (PBIB) rotation design compared to the density

of the first plausible value in the original data.
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Furthermore, 96% of the correlation differences are less than .05. We find

significant improvement in the number and magnitude of bias in correlations

among the items compared to Adams et al. (2013) rotation design. Regarding

the direction of the difference, 55% correlation differences have negative signs.

Because the number of negative correlation differences is close to the number

of positive correlation differences, we conclude that there is no evidence of

extensive attenuation in the correlations among the items after the single impu-

tation using pmm.

The correlation difference between the PVs and items is smaller compared to

the difference in Adams et al. (2013) rotation design. Only one correlation was

observed that had a 0.1 absolute difference. However, the attenuation between

the PVs and items is still an issue, since 14 of the 19 correlations are negatively

biased. The results suggest that it is possible to have a matrix sampling design

that preserves the marginal distributions of the PVs and the covariance structure

among the items and PVs after imputation. Further studies on improving the cor-

relations between PVs and rotated items are still needed.

Conclusions

This article presented three interrelated studies focusing on the issue of CQ

rotation and its implications for the generation of PVs in large-scale assessments.

Study 1 focused on the performance of three imputation algorithms and con-

cluded that pmm performed best with respect to generating marginal distributions

of imputed scales that match closely those of the observed data. Study 2 exam-

ined the quality of PV generation using pmm-imputed CQ data and served as a

partial replication of Adams et al. (2013). We found that regardless of whether

one uses a fully imputed CQ or the CQ without imputation, excellent recovery

of the marginal distributions of the PVs is observed, at least for the U.S. data.

However, we find that correlations among the imputed items are attenuated.

Finally, Study 3 explored a partially balanced incomplete block design for the

CQ to examine whether it could reproduce the marginal distributions and corre-

lation structure of the data. We found that the design examined in this article was

successful in reproducing the correlation structure of the data and, in addition,

reproduced the marginal distributions of the PVs as expected.

The evidence presented in this article argues for seriously considering ques-

tionnaire rotation as an option for increasing contextual information in large-

scale assessments. However, a set of issues, beyond the scope of this article, must

still be resolved in order to fully warrant questionnaire rotation (see also von

Davier, 2013). First, additional studies of imputation methods need to be exam-

ined. As noted, we found that pmm was fast and accurate, whereas polytomous

logistic regression and Bayesian linear regression did not perform as well. How-

ever, the methods examined in this study are by no means exhaustive of the range

of missing data imputation methods now readily available. In a similar example,
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a study of data fusion for large-scale assessments was presented in Kaplan and

McCarty (2013) who examined a much large number of imputation methods.

In their study, Kaplan and McCarty (2013) focused on creating a synthetic cohort

of data from PISA and TALIS and presented an experimental evaluation of a rep-

resentative group of data fusion methods using data from Iceland—the only

OECD country that implemented both PISA and TALIS to all members of the

relevant populations. On the basis of Rässler’s (2002) criterion, Kaplan and

McCarty (2013) found that Bayesian bootstrap predictive mean matching (Mein-

felder, 2011; Rubin, 1981) and the EM-bootstrap (Honaker, King, & Blackwell,

2010) performed best with respect to creating a usable synthetic data file for

research purposes.

A second issue concerns attenuation in relationships among the CQ imputed

values and the PVs. This issue relates to the general advice given in the MI lit-

erature regarding the use of all available information when imputing missing

data. As pointed out by Rubin (1987) and emphasized in the context of imputa-

tion in large-scale assessments by von Davier (2009, 2013), it is essential that all

available information be used when imputing missing data. In the context of our

article, if the PVs are not included as part of the imputation model for the CQ,

then analyses involving the CQ and the PVs (such as regression models) will

likely be biased. However, to address this problem would require a massive

imputation of the PVs and the CQ simultaneously. Such an analysis was beyond

the scope of this article and possibly not feasible from the point of view of a

large-scale assessment operation. Nevertheless, we do believe that future

research should examine simultaneous imputation of the PVs and CQ. We pre-

dict that with simultaneous imputation of the PVs and CQ that we will see little

improvement in reproducing the marginal distributions of the PVs for purposes

of policy reporting nor will we see much improvement in reproducing marginal

and joint distributions among the CQ variables themselves. We predict that we

will see improvement in correlations as well as model-based analyses involving

the CQ and the PVs.

A third issue concerns the impact of CQ rotation in the context of small area

estimation. Specifically, policy makers may be interested in obtaining reliable

estimates of proficiency in cognitive domains for small geographic areas or

demographic subgroups that were not directly accessed in the sampling frame.

The topic of small-area estimation is beyond the scope of this article, but suffice

to say that methods for small area estimation involve ‘‘borrowing strength’’ from

similar areas with sufficient data to be used to provide predictions of perfor-

mance for small demographic subgroups or areas (see e.g., Ghosh & Rao,

1994; Rao, 2004). Clearly, the use of matrix sampling alone or with imputation

can have a impact on the prediction of proficiency in small areas, and this topic

requires additional work before matrix sampling of the CQ can be confidently

recommended. Concerns associated with the second issue raised above are rele-

vant here as well.
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Finally, it is important to examine alternative rotation designs beyond those

presented in this article. The PISA 2012 rotation design provides excellent

recovery of marginal distributions regardless of how the missing data are

imputed, but with imputation, the correlation structure can be considerably

biased. The partially balanced incomplete block design proposed in Study 3

seems to resolve this issue, but it was by no means exhaustive of the range

of matrix sampling designs available.

The additional research questions raised in the previous paragraphs can, in

principle, be addressed during the field trial stage of a large-scale assessment

or through supplementary research supported by the organizing bodies of these

large-scale assessments (e.g., OECD, International Association for the Evalua-

tion of Educational Achievement [IEA], U.S. Department of Education). It is

during the field trial stage that cognitive and noncognitive assessment items are

trialed and their psychometric properties studied. We argue the field trial stage

should also be used to examine different matrix sampling designs along with

different imputation algorithms. In this way, a cumulative body of evidence

regarding matrix sampling of CQs can be developed and discussed during the

design of phase of large-scale educational assessments.
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Notes

1. The other two levels are ‘‘preserving individual values’’ and ‘‘preserving joint

distributions.’’

2. In this article, we use the PISA nomenclature of ‘‘forms’’ and ‘‘clusters.’’ In

some large-scale assessments these are referred to as ‘‘booklets’’ and

‘‘blocks,’’ respectively.

3. Correlation matrices from which Figure 6 is derived are available on request.

References

Adams, R. J., Lietz, P., & Berezner, A. (2013). On the use of rotated context question-

naires in conjunction with multilevel item response models. Large-Scale Assessments

in Education, 1, 5. Retrieved from http://www.largescaleassessmentsineducation.com/

content/1/1/5

Adams, R. J., Wilson, M., & Wu, M. (1997). Multilevel item response models: An

approach to errors in variables regression. Journal of Educational and Behavioral Sta-

tistics, 22, 47–76.

On Matrix Sampling

78

 at Universitaetsbibliothek on February 21, 2016http://jebs.aera.netDownloaded from 



Adams, R. J., & Wu, M. (2007). The mixed-coefficients multinomial logit model. A gen-

eralized form of the Rasch model. In M. von Davier & C. H. Carstensen (Eds.), Multi-

variate and mixture distribution Rasch models: Extensions and applications (pp. 55–

76). New York, NY: Springer.

Adams, R. J., Wu, M. L., & Wilson, M. R. (2015). ACER conquest 4.0. Melbourne,

Australia: ACER.

Enders, C. K. (2010). Applied missing data analysis. New York, NY: The Guilford Press.

Frey, A., Hartig, J., & Rupp, A. A. (2009). An NCME instructional module on booklet

designs in large-scale assessments of student achievement: Theory and practice. Edu-

cational Measurement: Issues and Practice, 28, 39–53.

Ghosh, M., & Rao, J. N. K. (1994). Small area estimation: An appraisal. Statistical Sci-

ence, 9, 55–93.

Gonzalez, E., & Rutkowski, L. (2010). Principles of multiple matrix booklet designs and

parameter recovery in large-scale assessments. IEA-ETS Research Institute Mono-

graph, 3, 125–156.

Honaker, J., King, G., & Blackwell, M. (2010). Amelia II: A program for missing data

[Computer software manual]. Retrieved from http://CRAN.R-project.org/packa

ge¼Amelia (R package version 1.2-18)

Kaplan, D., & McCarty, A. T. (2013). Data fusion with international large scale assess-

ments: A case study using the OECD PISA and TALIS surveys. Large-Scale Assess-

ments in Education, 1, 6. Retrieved from http://www.largescaleassess

mentsineducation.com/content/1/1/6

Kiefer, T., Robitzsch, A., & Wu, M. (2014). TAM: Test analysis modules [Com-

puter software manual]. Retrieved from http://CRAN.R-project.org/package¼TAM

(R package version 1.0-3.18-1).

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd. ed.).

New York, NY: Wiley.

Meinfelder, F. (2011). BaBooN: Bayesian bootstrap predictive mean matching – multiple

and single imputation for discrete data [Computer software manual]. Retrieved from

http://CRAN.R-project.org/package¼BaBooN (R package version 2.14.0).

Mislevy, R. J. (1991). Randomization-based inference about latent variables from com-

plex samples. Psychometrika, 56, 177–196.

Mislevy, R. J., Beaton, A. E., Kaplan, B., & Sheehan, K. M. (1992). Estimating population

characteristics from sparse matrix samples of item responses. Journal of Educational

Measurement, 29, 133–161.

Montgomery, D. C. (2012). Design and analysis of experiments (8th ed.). Hoboken,

NJ: Wiley.

Organization for Economic Cooperation and Development. (2006). Assessing scientific,

reading, and mathematical literacy: A framework for PISA 2006. Paris, France: Author.

Organization for Economic Cooperation and Development. (2009a). Creating effective

teaching and learning results: First results from TALIS. Paris, France: Author.

Organization for Economic Cooperation and Development. (2009b). PISA 2006 technical

report. Paris, France: Author.

Organization for Economic Cooperation and Development. (2013). The PISA 2012

assessment and analytic framework: Mathematics, reading, science, problem solving,

and financial literacy. Paris, France: Author.

Kaplan and Su

79

 at Universitaetsbibliothek on February 21, 2016http://jebs.aera.netDownloaded from 



Organization for Economic Cooperation and Development. (2014). PISA 2012 technical

report. Paris, France: Author.

R Core Team. (2014). R: A language and environment for statistical computing [Com-

puter software manual]. Vienna, Austria. Retrieved from http://www.R-project.org/

Rao, J. N. K. (2004). Small area estimation. Hoboken, NJ: John Wiley & Sons.
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