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Abstract. Eye tracking allows us to identify visual strategies through gaze 
behavior, which can help us understand how students process content. 
Furthermore, understanding which visual strategies are successful can help us 
improve educational materials that foster successful use of these visual 
strategies. Previous studies have demonstrated the predictive value of eye 
tracking for student performance. Chemistry is a highly visual domain, making 
it particularly appropriate to study visual strategies. Eye tracking also provides 
measures of pupil dilation that correlate with cognitive processes important to 
learning, but have not yet been assessed in any realistic learning environments. 
We examined the gaze behavior and pupil dilation of undergraduate students 
working with a specialized ITS for chemistry: Chem Tutor. Chem Tutor 
emphasizes visual learning by focusing specifically on graphical 
representations. We assessed the value of over 40 high-level gaze features along 
with measures of pupil diameter to predict student performance and learning 
gains across an entire chemistry problem set. We found that certain gaze 
features are strong predictors of performance, but less so of learning gains, 
while pupil diameter is marginally predictive of learning gains, but not 
performance. Further studies that assess pupil dilation with higher temporal 
precision will be necessary to draw conclusions about the limits of its predictive 
power. 
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1   Introduction 

Eye tracking provides behavioral and physiological metrics that researchers can use to 
study a number of psychological and physiological processes. In the context of 
education, these metrics can reveal visual strategies and provide clues as to how 
students process content. Armed with such knowledge, instructional designers can 
build better content and interfaces for Massive Open Online Courses (MOOCs), 
Intelligent Tutoring Systems (ITS), and with the advent of affordable and wireless 
head-mounted trackers, perhaps even traditional classrooms. While eye tracking 
research applied to education has already begun to yield insights into students’ 
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behavior and internal states, we identify two important research questions that deserve 
considerable attention, namely, whether gaze behavior predicts performance and 
learning gains in a highly visual, STEM-related, domain-specialized ITS, and whether 
the recognized utility in measuring cognitive processes by tracking pupil diameter 
transfers to realistic learning contexts. 
 
Current eye tracking technology provides information on blink rate, fixation, saccades 
and pupil diameter at high sampling rates [1].  Blink rate is a measure of how quickly 
eyelids are closed, then opened.  Saccades are abrupt, rapid movements from one 
element to another. Fixation is the amount of time the eyes are focused on a given 
point on the screen, such as a letter within a word. Pupillometry is concerned with 
measurement of the pupillary diameter and its fluctuation over time in response to 
external stimuli or internal state changes. 
 
Much of the current work in applying eye tracking to education has focused on what 
content students fixate on, for how long, and in what order or sequence. Some of this 
research has been aimed at distinguishing the gaze behavior of high-performing and 
low-performing students. For instance, when given a standardized multiple-choice 
science exam involving chemistry, biology and physics questions, participants who 
had more expertise in a specific subject area needed fewer eye fixations to process 
information in problem statement, image, and multiple choice zones and had fewer 
saccades between zones [2]. High-performing students also spend more time looking 
at relevant problem details and candidate solution choices than low-performing 
students [3]. A more recent study sought to understand the differences in eye tracking 
patterns between high and low performers in three engineering-related computer 
games that required spatial ability, problem-solving skills, and a capacity to interpret 
visual imagery [4]. Successful players showed shorter first fixations after a stimulus 
presentation, which has been correlated with high attentional readiness [1]. High 
performers also used fewer clicks, more unique fixation points, and a longer duration 
on average for each eye fixation, which was speculated to be associated with 
engagement and cognitive processing prior to taking action. In contrast, low 
performers were characterized by longer first fixations after stimulus presentation, 
more mouse clicks, and shorter durations for each fixation point, which might suggest 
a trial-and-error approach. This constitutes the first attempt to our knowledge to apply 
eye tracking to a highly visual problem-solving domain that focuses entirely on skills 
that are important to core subjects like chemistry [5]. One pathway to expanding such 
an endeavor will require a closer look at several aspects of gaze behavior in learning 
environments aimed specifically at more direct instruction of the target field of study. 
 
The role of pupillometry in the science of learning and education is far less explored 
than gaze behavior. However, there is reason to believe it may provide equal insight 
to the field. In cognitive psychology, pupillometry has been shown to indicate a 
number of cognitive processes in highly-controlled cognitive task paradigms.  
Notably, pupil size correlates with the difficulty of a task across a number of domains 
[6]. For example, pupils dilate while doing difficult versus easy multiplication 
problems, recalling complicated sentences [7], and performing difficult analogy tasks 
[8]. Pupils also reliably dilate with the number of digits to be remembered, reflecting 
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short term memory load [6].  Lastly, pupil diameter has even been shown to fluctuate 
with attention and mental effort [9]. Pupillometry is a more accurate, less noisy 
measure of these processes than EEG and a cheaper and more practical alternative to 
imaging methods such as fMRI. Given the utility of pupillometry in indexing 
cognitive processes across a wide range of tasks, it is reasonable to assume that pupil 
dilation measurements may help predict student performance and learning gains. 
Further, our current understanding of cognitive load has led to improvements in 
instructional design and procedures that can improve learning [10]. Pupillometry may 
provide a new window into cognitive processes such as cognitive load during 
complex realistic learning scenarios, but only if the utility of which can be shown to 
be more externally valid. An intelligent tutoring system provides such a complex 
learning environment as compared to controlled cognitive tasks. 
 
Here, we ask whether a large number of gaze features along with pupil diameter can 
predict student performance and learning gains in learning concepts from chemistry in 
an intelligent tutoring system. 

2   Methodology 

2.1 Experimental Design and Data Collection 
 
We obtained gaze and pupil diameter for 95 undergraduate students using a SMI RED 
250 eye-tracker as they worked with an ITS for chemistry: Chem Tutor [11]. This 
data set was drawn from an experiment that investigated the effects of different types 
of support students were given for making connections between graphical 
representations such as Lewis structures and ball-and-stick figures (please refer to 
[11] for information on these support types). Figure 1 shows a truncated example of 
the student-problem level data. Students had to complete all problems that were part 
of the intervention of the experiment. Each problem contained a series of steps with 
unlimited attempts. Students could request hints from Chem Tutor for steps they 
struggled with.  In addition, each student took a pretest and posttest to assess 
reproduction and transfer of representational skills and chemistry knowledge. 
 
student problem errorRate_medianSplit ... 1stFixDur_GR 

1 U1_I1_1 0 ... 347 

1 U1_I2_1 0 ... 203 

1 U1_I3_1 1 ... 115 

1 U2_I1_1 1 ... 320 

... ... ... ... ... 
Figure 1. Truncated example of data set 
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2.2 Feature Engineering 
 
We constructed forty problem-level gaze features averaged over the time taken to 
complete each problem. From the raw eye tracking data, we created areas of interest 
(AOIs) from elements of the tutor that included graphic representations (GR), 
whitespace, titles, hints, the progress bar, and the interaction pane.  We use 
“whitespace” here as a catch-all for any screen space that was not occupied by other 
AOIs. We computed frequency of switching between unique AOIs, a metric that has 
been associated with perceptual integration [12]. We also computed the frequency of 
switching between GRs as the number of times a fixation on one AOI was followed 
by one on another AOI. Next, we computed the duration of fixation after the first 
inspection of an AOI. A first inspection of an AOI is thought to indicate early 
processing of content [13]. The duration of fixations after the first inspection is 
thought to reflect intentional processing to integrate one source of information with 
another [13]. We then computed the duration of second-inspection fixations on each 
AOI as the sum of fixation durations that occurred after the first fixation on AOIs. In 
addition, we computed the sum of total fixation durations on each AOI. Beyond 
single-AOI fixation features, we also computed fixation sequence features. These 
features involve a specific ordering of fixation targets. For instance, a student may 
first focus on a graphic, then on the text of a hint, and finally back to the graphic 
again. The majority of them involve focus on GRs in reference to other information, 
computed as the counts of fixations on one AOI followed by fixation on either one 
other (2-point sequence), or two other AOIs (3-point sequence). 
 
2.3 Analysis 
 
To investigate which features were predictive of student performance and learning 
gains, we first identified a number of features that correlated with performance. Given 
that most of our features were not normally distributed and difficult to normalize 
through transformations, we calculated independent Pearson correlations between our 
outcome and predictors since they do not assume normality. Our performance 
outcome variable was a metric termed first-incorrect rate (FIR) that is defined as the 
number of times a student gave an incorrect answer on first attempt normalized by the 
total number of steps for that question, which is standard practice in ITS research 
[14]. We used the number of first-attempt incorrect instead of the total number of 
incorrect attempts in order to capture performance on new steps (students could re-
attempt steps until they were correct). Our outcome variable representing a learning 
gains score (LGS) was defined as posttest minus pretest score for each student. To 
predict student performance and learning gains, we used logistic regression on a 
median split of the criterion variables. Due to the issues with non-normal features, our 
final model used Gaussian logistic regression on a median split instead of multiple 
regression on a continuous performance criterion. Finally, we evaluated each model 
using four-fold cross validation. 
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3   Results 

Several fixation features significantly predicted FIR (see Table 1), and were highest 
when averaged over problems. Correlations between FIR and all other features 
including pupil diameter were not significant. The majority of these features involved 
fixation on titles, the progress indicator, and the interaction pane. All associations 
were positive (e.g. longer fixation on titles accompanied higher error rates) with the 
exception of those involving the progress indicator and screen/interface whitespace. 
Fixation on titles seemed to have the strongest negative effect on error rate.  This may 
be because lower performers tended to focus longer on the titles when they were 
confused about the topic.  Features involving fixation on the progress indicator were 
consistently associated with smaller error rates, perhaps because learners who kept 
track of their progress to budget time or used progress as motivation perform better as 
a result. 

Table 1. Correlations between FIR (first-incorrect rate) and selected fixation features 

Feature  r Feature Description 

fixDur_Titles 0.80*** sum of fixation durations on titles 

fixDur_Progress -0.61** sum of fixation durations on progress indicator 

fixDur_Interaction 0.48* sum of fixation durations on interaction pane 

1stFixDur_Titles 0.81*** duration of first fixation on titles 

1stFixDur_Interaction 0.60** duration of first fixation on interaction pane 

1stFixDur_Progress -0.43* duration of first fixation on progress indicator 

1stFixDur_WhiteSpace -0.50* duration of first fixation on whitespace 

2ndFixDur_Titles 0.80*** duration of second fixation on titles 

2ndFixDur_Progress -0.61** duration of second fixation on progress indicator 

2ndFixDur_Interaction 0.48* duration of second fixation on interaction pane 
 

* p < 0.05, ** p < 0.01, *** p <0.0001  
 
In addition, Table 2 shows a number of fixation sequence features that correlate 
significantly with FIR. No significant correlations involved fixation on GRs alone, 
suggesting that successful learners spend more time interpreting graphics by relating 
them to other information. Looking between GRs or between GRs and hints was 
associated with higher error rates, while looking at GRs or hints in reference to the 
interaction pane was associated with lower error rates. 
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Table 2. Correlations between FIR (first-incorrect rate) and selected fixation sequence features 

Feature r Feature Description 

seq2_betweenGRs -0.58* 2-point sequence between GR 

seq2_GR-Interaction 0.54** 2-point sequence between GR and IP 

seq2_Interaction-HintText 0.47* 2-point sequence between IP and HT 

seq3_betweenGRs -0.60** 3-point sequence between GR 

seq3_Interaction-GR-
Interaction 

0.61** 3-point sequence between IP, GR, and IP 
again 

seq3_GR-HintText-GR -0.49* 3-point sequence between GR, HT, and GR 
again 

seq3_HintText-GR-HintText -0.47* 3-point sequence between HT, GR, and HT 
again 

seq3_GR-Progress-GR -0.44* 3-point sequence between GR, PI, and GR 
again 

 

* p < 0.05, ** p < 0.01, *** p <0.0001  
GR = Graphical Representations, IP = Interaction Pane, HT = Hint Text, PI = 
Progress Indicator  
 
3.1 Prediction and Model Evaluation 
 
While pretest scores alone had some predictive value with respect to FIR, gaze 
features provided a much more accurate model. A model containing both sets of 
predictors outperformed either set by itself. Pupil diameter was the least effective 
predictor of FIR. Top coefficients for the gaze-only model were consistently made up 
of a subset of the sequence features, the highest of which involved either interaction 
pane, GRs, or both. Following the correlations, the fixation sequence between the 
interaction pane, a GR, and back to the interaction pane was frequently the highest 
coefficient. Moreover, nearly all top coefficients involved GRs only when in relation 
to other AOIs. In general, more complex sequence features (3-point) were not more 
predictive than simple sequence features (2-point). The most accurate model 
contained only a binary indicator of which problem was given, which was likely 
representing difficulty. This model was not improved by the addition of gaze or 
pretest features. LGS was best predicted by pretest features alone, but pupil diameter 
did predict 5% above the majority class by itself. Table 3 provides a summary of 
these results. 
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Table 3. Average prediction accuracy for logistic regression models predicting FIR and LGS 

Model Accuracy (FIR) Accuracy (LGS) 

Majority Class 51.6%* 50% 

Pretest Scores 58% 68% 

Gaze Features 63% 53% 

Pupil Diameter 51% 55% 

Pretest Scores, Gaze Features 66% 68% 

Problem 72% 44% 
 

* Median splits of the criterion were not perfectly symmetrically distributed (Majority 
Class = High Error Rate) 

4   Limitations & Future Work 

While both gaze behavior and pupil diameter were predictive and informative, neither 
comprised the best predictors for our outcome variables. However, we expect these 
metrics to be more useful when problem difficulty and pretest scores are held 
approximately constant. While our simple gaze features were enough to outperform 
pretest-based prediction accuracy, not all of our results are directly interpretable in 
ways that can inform instructional design. Of particular interest is the finding that 
successful students relate graphical representations to other information as opposed to 
reviewing them in isolation. This spontaneous behavior may indicate that those 
students are using available resources more productively. This finding aligns with 
research on learning with multiple representations, which indicates that students need 
to integrate information presented across different representations [15]. Additional 
work will be needed to identify why exactly some of these features are such powerful 
predictors. While pupil diameter was somewhat predictive of learning gains, as a first 
glimpse at the utility of pupillometry in the wild, it was generally a very poor 
predictor of performance in our analysis. It is possible that even controlled ITS 
sessions introduce too much noise for pupil measurements to be useful. More likely, 
since cognitive phenomena detectable through pupil dilation are typically observed on 
the order of a few seconds, our dataset, which only contained average pupil dilation 
per problem, may very well have lacked the granularity necessary to capture these 
variations. In the time it takes to solve an entire, multi-step problem, learners may go 
through several positive and negative states of arousal, affect, cognitive load, and 
attentional shifts. Due to current difficulties with accurate time synchronization of the 
ITS and eye-tracking hardware, the current data set does not accurately represent 
smaller time scales. In future work, we plan to work with more granular, 
synchronized data to address this limitation. 
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5   Conclusion 

Several of our analyses indicate that eye fixation and fixation sequence features are 
good predictors of how we have chosen to quantify student performance. While pupil 
diameter lacked similar predictive power, we expect that future experiments with 
higher temporal precision at smaller scales still holds considerable promise. Once a 
satisfactory set of features and level of granularity is established, one can explore the 
reasons why such features are indicative of the many fascinating aspects of the 
learning process and implement changes to instructional design based on this 
knowledge. Our results provide further motivation to explore the usefulness of eye 
tracking in educational research. 
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