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A Framework for Educational Technologies 

that Support Representational Competencies 
M. A. Rau 

Abstract—Visual representations are ubiquitous in STEM disciplines. Yet, students’ difficulties in learning with visual 

representations are well documented. Therefore, to succeed in STEM, students need representational competencies—the 

ability to use visual representations for problem solving and learning. Educational technologies that support students’ acquisition 

of representational competencies can significantly enhance their success in STEM disciplines. Current design frameworks for 

educational technologies do not offer sufficient guidance to develop supports for representational competencies. This paper 

presents a new design framework that describes an iterative, step-by-step approach for the design of educational technologies 

that support representational competencies (SUREC) in a way that aligns with the demands specific to the target discipline. The 

paper illustrates how this framework was used to inform the design of an intelligent tutoring system for undergraduate 

chemistry. An evaluation study suggests that the SUREC framework yielded an effective educational technology that enhances 

students’ learning of content knowledge. 

Index Terms—Educational technologies, Multiple representations, Representational competencies, Discipline-based research 

——————————      —————————— 

1 INTRODUCTION

earning of content knowledge in science, technology, 
engineering, and mathematics (STEM) disciplines de-

pends on students’ ability to think in terms of visual rep-
resentations [1, 2]. For example, astronomers visualize the 
solar system, engineers visualize machines, and chemists 
visualize atoms and electrons. Content knowledge in the 
STEM disciplines is often inherently visuo-spatial [1, 3, 4]. 
To make new content accessible to students, instructional 
materials in STEM tend to rely on visual representations, 
such as the ones shown in Fig. 1 for atoms in chemistry. 
Usually, a single visual representation does not suffice to 
depict the complexity of the content [5-8]. Hence, instruc-
tion typically uses multiple visual representations, where 
different representations emphasize complementary as-
pects of the to-be-learned content. Indeed, the educational 
psychology literature provides evidence that multiple 
representations can lead to higher learning outcomes of 
content knowledge than a single representation [7, 9].  

Yet, prior research documents that learning with mul-
tiple visual representations is challenging because stu-
dents may fail to understand the visual representations or 
may fail to integrate information from multiple visual 
representations [10-12]. This phenomenon is known as 
the representation dilemma [13]: On the one hand, students 
learn new content from visual representations they may 
not yet understand. On the other hand, students have to 
learn about visual representations that show content they 
do not yet understand. To resolve the representation di-
lemma, research within the Learning Sciences field has 
focused on representational competencies: capabilities that 
enable students to learn with multiple visual representa-
tions, including the ability to select and produce appro-

priate visual representations to solve tasks, to reason 
about concepts, and to use visual representations to dis-
cuss ideas with others [1, 2, 14, 33].  

Failure to acquire critical representational competencies 
can severely impede students’ learning of content 
knowledge [8, 15, 16]. Unfortunately, many instructors 
have an educational blind spot about representational com-
petencies [14]: students’ lack of representational compe-
tencies often goes unnoticed because instructors tend to 
assume that students can interpret and navigate the mul-
tiplicity of visual representations [6, 8, 14, 16].  

To address these issues, prior research has investigated 
how best to help students acquire representational com-
petencies. The main conjecture of this research is that en-
hancing students’ representational competencies enhanc-
es their learning of content knowledge [2, 7]. Indeed, a 
considerable number of empirical studies in the STEM 
disciplines show that instructional support for representa-
tional competencies can improve students’ learning of 
content knowledge [e.g., 9, 17, 18].  

Educational technologies can be particularly effective 
in supporting representational competencies. First, they 
offer effective ways to augment visual representations 
through means such as color highlighting [19], dynamic 
linking [20, 21], and animations [22]. Second, educational 
technologies can provide opportunities for problem solv-
ing with interactive visual representations, which has 
been shown to be effective in STEM disciplines [23, 24]. 
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Fig. 1. Multiple visual representations of atoms: Lewis structure, 
Bohr model, energy diagram, and orbital diagram for oxygen. 
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Third, they can provide adaptive feedback on these inter-
actions, which can be effective in enhancing representa-
tional competencies and content knowledge [25, 26]. Fi-
nally, educational technologies can model and trace stu-
dents’ representational competencies and adapt instruc-
tion accordingly, for instance by selecting problems or 
visual representations of appropriate difficulty [27, 28]. 

Despite these advantages, current design frameworks 
provide little guidance for the development of education-
al technologies that support representational competen-
cies. On the one hand, a number of design frameworks 
focus on the development of educational technologies 
[e.g., 29-32]. However, they do not take representational 
competencies into account. As detailed in the following 
section, the design of support for representational compe-
tencies requires a different design methodology than de-
scribed in existing design frameworks. On the other hand, 
a few design frameworks focus on support for representa-
tional competencies [e.g., 7, 33]. However, they tend to 
describe broad principles for learning with visual repre-
sentations but fail to provide concrete guidance for itera-
tive design processes that align educational technologies 
with the specific demands of the target discipline. 

Consequently, instructional designers may fail to in-
corporate support for representational competencies alto-
gether. Even if they do incorporate support for represen-
tational competencies, they have to rely on ad-hoc ap-
proaches to design such support. Yet, research on the ed-
ucational blind spot [e.g., 15, 16] suggests that instruc-
tional designers may overestimate students’ representa-
tional competencies. Therefore, ad-hoc approaches may 
yield inadequate or even missing support for students’ 
representational competencies, which may jeopardize 
students’ learning of content knowledge [10, 11]. 

To address this issue, I describe a new framework that 
provides principled guidance for the design of education-
al technologies that provide support for representational 
competencies (SUREC). The following section describes 
existing frameworks that the SUREC framework builds 
on. Next, I describe how the SUREC framework expands 
prior frameworks. To this end, I detail design approaches 
that are specific to representational competencies and 
illustrate SUREC framework with an educational tech-
nology for chemistry, Chem Tutor. I conclude with a dis-
cussion of implications for the design of educational 
technologies with multiple visual representations. 

2 EXISTING DESIGN FRAMEWORKS 

2.1 Educational Technologies 

In general, the goal of educational technology design 
frameworks is twofold. One goal is to align educational 
technologies with the educational goals of the target dis-
cipline (e.g., learning of content knowledge, achievement 
on standardized tests). A second goal is to align educa-
tional technologies with the given educational context 
(e.g., classroom, homework). To achieve this alignment, 
design frameworks typically use iterative, step-by-step 
approaches. A careful analysis of the educational goals 
and the context is typically followed by a development 

phase, which is followed by another analysis phase to test 
the technology (or a prototype) in the field, which is again 
followed by a development phase, and so forth. In es-
sence, educational technology design frameworks pro-
vide detailed guidance for instructional designers to en-
gage in the steps involved in this iterative design process. 

Many frameworks focus on aligning educational tech-
nologies with discipline-specific educational goals [19, 29-
32, 34-37]. These frameworks tend to use a learner-
centered approach: they provide guidance for analyzing 
cognitive requirements of the learning tasks while build-
ing on students’ prior knowledge. For example, the Anal-
ysis Design Development Implementation Evaluation 
(ADDIE) model [29, 30] describes five iterative steps in 
which instructional designers analyze an educational is-
sue, design and develop an intervention, which is then 
implemented and evaluated with formative and summa-
tive methods. Another example is the Four-Component 
Instructional Design (4C/ID) model [35], which describes 
which instructional methods are best suited for 
knowledge of different levels of complexity, and how 
such instructional methods should be sequenced. 

Several design frameworks put an additional emphasis 
on the educational context. These user-centered design 
approaches focus on enhancing the usability of the tech-
nology [31, 32, 38-42]. They provide guidance for the de-
sign of educational technologies that align with the given 
classroom practices. For example, the ASSURE model [31] 
includes students and teachers into the design process 
that involves analyzing educational standards and class-
room culture, creating lesson plan state these goals, select-
ing software that meets these goals, using the software 
while requiring student participation, and evaluating at-
tainment of goals. Another example is described by [32], 
who present an approach that helps developers navigate 
design conflicts that result from the fact that educational 
technologies have multiple stakeholders with sometimes 
conflicting needs, such as teachers’ needs to organize a 
classroom and students’ needs for entertainment.  

An advantage of these frameworks is that they are 
widely applicable: they are often agnostic to the discipline 
(e.g., math, chemistry) and to the knowledge type (e.g., 
procedural, conceptual knowledge). This broad applica-
bility is made possible by learner-centered and user-
centered methods that discover potential obstacles to stu-
dents’ learning in a bottom-up (i.e., data-driven) fashion. 

However, these bottom-up approaches are suboptimal 
for discovering challenges that result from lack of repre-
sentational competencies. As mentioned, the literature on 
the educational blind spot documents that most people 
(including instructors, instructional designers, and stu-
dents) are not aware that representational competencies 
pose a major obstacle to students’ learning [13, 14]. There-
fore, bottom-up approaches may fail to reveal that repre-
sentational competencies pose an issue for students’ 
learning, and may fail to detect students’ difficulties in 
acquiring representational competencies. Hence, a limita-
tion of current educational technology design frameworks 
is that their methods are suboptimal for educational tech-
nologies that support representational competencies. 
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2.2 Support for Representational Competencies 

The goal of design frameworks for the support of repre-
sentational competencies is to create instructional inter-
ventions that help students acquire representational com-
petencies. Ainsworth’s Design, Functions, and Tasks 
(DeFT) framework [7] describes a number of competen-
cies that students need to acquire to learn with visual rep-
resentations. DeFT describes principles for the design of 
instructional support that helps students acquire these 
competencies. For example, students need to make con-
nections among multiple visual representations. To this 
end, instruction should help students explain connections 
between visual features that show corresponding con-
cepts (e.g., the dots in the Lewis structure and the green 
dots in the Bohr model both show valence electrons).  

diSessa’s metarepresentation competence (MRC) 
framework [33] describes discipline-specific considera-
tions for instruction that supports representational com-
petencies. It emphasizes the importance of meta-cognitive 
knowledge about representations (e.g., which visual rep-
resentation is appropriate for which type of concept or 
task). For example, the MRC framework suggests that in 
addition to helping students understand the strengths 
and limitations of conventional representations by asking 
students to critique representations, students should also 
modify existing representations and invent their own.  

A major advantage of these frameworks is that they 
are applicable to a broad range of disciplines; both the 
DeFT and the MRC framework describe general represen-
tational competencies that play a role in any STEM disci-
pline. However, the broad applicability of these frame-
works also yields a major limitation. Even though many 
representational competencies are important across disci-
plines [43], they are used in discipline-specific ways be-
cause different disciplines use different types of visual 
representations for different purposes [9, 44]. For exam-
ple, an important cross-cutting representational compe-
tency involves understanding that visual representations 
are used in science to model real-world phenomena [43], 
but that they are limited in their capability to capture the 
complexity of these phenomena. Yet, the visual represen-
tations and the real-world phenomena are specific to the 
given discipline. Hence, instructional support for repre-
sentational competencies needs to be tailored to the de-
mands of the target discipline. Existing frameworks for 
representational competencies do not provide guidance 
for iterative, step-by-step design processes that guide de-
velopment of supports for representational competencies 
that tailor to the target discipline.  

3 DESIGN FRAMEWORK FOR SUPPORT OF 

REPRESENTATIONAL COMPETENCIES (SUREC) 

This brief review of existing design frameworks shows 
that there is a gap between (1) frameworks that provide 
step-by-step guidance for iterative design processes to 
align educational technologies with discipline-specific 
demands without focusing on representational competen-
cies, and (2) frameworks that focus on representational 
competencies without providing guidance for step-by-step 

design processes to tailor to discipline-specific demands. 
The goal of this paper is to close this gap by providing a 
new design framework for educational technologies that 
provide support for representational competencies. The 
SUREC framework provides step-by-step guidance for an 
iterative design process that tailors support for represen-
tational competencies to discipline-specific demands. It 
builds on the existing design frameworks just reviewed, 
but differs from them in taking putting a stronger empha-
sis on top-down (i.e., theory-driven) approaches to identi-
fy obstacles related to representational competencies. 

To illustrate the SUREC framework, I use the devel-
opment of Chem Tutor as an example. I chose this exam-
ple from chemistry for two reasons. First, chemistry is a 
suitable discipline to illustrate the framework because 
representational competencies play a major role in chem-
istry learning. Chemistry instruction uses visual represen-
tation to illustrate phenomena that cannot be observed 
with the regular eye [45, 46]. Because different visual rep-
resentations provide complementary insights [4, 47], 
chemistry instruction typically uses multiple visual repre-
sentations. For example, when learning about atomic 
structure, students typically encounter the representa-
tions in Fig. 1. To integrate the information presented by 
these representations to learn about atomic structure, stu-
dents need to understand how each of them depicts con-
cepts and to make connections among them [4, 48]. There 
is much evidence that students’ difficulties in learning 
chemistry concepts are related to their difficulties in ac-
quiring these representational competencies [24, 49, 50].  

A second reason why chemistry is a suitable discipline 
to illustrate the SUREC framework is that the role of rep-
resentational competencies for learning of content 
knowledge in chemistry is similar to other STEM disci-
plines. As in most STEM disciplines, representational 
competencies are important because multiple visual rep-
resentations provide complementary views on important 
concepts [51, 52]. If students rely on only one visual rep-
resentation, they may miss important conceptual aspects, 
which can severely interfere with their learning [47]. 
Thus, the need for support for representational compe-
tencies in chemistry stems from the fact that different rep-
resentations provide complementary information [4, 
53]—just like it does in other STEM disciplines [54-56]. 
Therefore, the illustration of the SUREC framework de-
scribed is likely applicable to other STEM disciplines. 

In the following, I describe the SUREC framework in 
“steps”. However, I note that these steps are iterative and 
non-linear. For example, the insights gained through re-
search in one step may yield new questions about the 
previous step. As a result, it may be necessary to engage 
in several iterations across these steps. I will discuss: 

Step 1: Identify which visual representations are typi-
cally used in the target discipline to depict relevant con-
cepts, using top-down approaches that involve the review 
of discipline-based research and common educational 
materials, and/or (semi-) structured interviews or sur-
veys with educators and students. 

Step 2: Identify candidate representational competen-
cies, using top-down approaches that involve the review 
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of literatures on theories of learning and discipline-based 
research. 

Step 3: Test whether these representational competen-
cies are indeed distinguishable competencies, and wheth-
er they relate to the target content knowledge, combining 
top-down and bottom-up approaches. 

Step 4: Investigate which problem-solving behaviors 
are associated with these representational competencies 
(e.g., students’ explanations of commonly used visual 
representations, student-generated representations), 
combining top-down and bottom-up approaches.  

Step 5: Use iterative design and pilot-testing methods 
to develop of the educational technology, combining top-
down and bottom-up approaches. 

Step 6: Evaluate the effectiveness of components of the 
educational technology for target learning outcomes, us-
ing controlled experiments. 

Step 7: Evaluate the effectiveness of the educational 
technology in the context for which it was designed, us-
ing field experiments. 

In the following, I detail each step while illustrating 
how they were carried out in the design of Chem Tutor.  

3.1 Step 1: Identify Visual Representations and 
Relevant Concepts 

A first step in developing an educational technology for 
representational competencies is to investigate which vis-
ual representations are used in educational and profes-
sional contexts within the target discipline. Because these 
representations are generally used to illustrate abstract 
concepts, this investigation will document relevant con-
cepts that the educational technology should target.  

Given the educational blind spot on representational 
competencies [13, 14], I recommend to rely on top-down 
approaches that are guided by educational practice 
guides that describe cross-cutting representational com-
petencies [14, 43] and discipline-specific education litera-
ture on representational competencies. For many STEM 
disciplines, research documents which visual representa-
tions best communicate which concepts and which repre-
sentations may help students overcome common miscon-
ceptions. The literature review will yield a list of repre-
sentations that are used for particular concepts. It will 
describe which representations are used throughout the 
curriculum, which representations are used for particular 
concepts, and which representations are most important. 

Following the literature review, I suggest reviewing 
educational materials commonly used in the target con-
text (e.g., textbooks). This review can verify and augment 
the list of visual representations and concepts. For exam-
ple, it is possible that some materials use additional visual 
representations to illustrate particular concepts or that 
some visual representations are not used at all.  

Further, I recommend conducting interviews or sur-
veys with educators and students. Structured or semi-
structured interviews can be used to identify educator 
preferences for particular visual representations. Educa-
tors may skip particular visual representations used in 
textbooks, and they may provide additional visual repre-
sentations not covered in the textbook. Similarly, students 

may prefer particular visual representations, or they may 
search other resources for additional visual representa-
tions. Information from interviews and surveys should be 
used to alter the list of visual representations and con-
cepts. The outcome of Step 1 is an overview of which vis-
ual representations are used for which concepts. 

3.1.1 Representations and Concepts in Chemistry 

To design Chem Tutor, I reviewed chemistry education 
research as well as high school and undergraduate cur-
ricula. Although Chem Tutor targets undergraduates, I 
included high school curricula because they offer insights 
into students’ prior instructional experiences. Knowing 
about representations students have encountered in prior 
instruction is important because these representations can 
sometimes introduce misconceptions. I then used semi-
structured interviews with college educators to address 
questions that emerged from these reviews.  

My review suggests that the visual representations de-
picted in Fig. 1 are commonly used in instruction on 
atomic structure. The Lewis structure (Fig. 1, left) is the 
most commonly used visual representation [57, 58]. Lewis 
structures are ubiquitous in high school and undergradu-
ate curricula [59-66]. Although Lewis structures are high-
ly abstract, they contain visuo-spatial information that 
can be used to make predictions about reactive behaviors 
and substance properties [57]. Bohr models (Fig. 1, center-
left) are used extensively at the high school level, but not 
at the undergraduate level [47, 58, 67]. Although they are 
intuitive, they have been criticized for being simplistic 
and misleading [47, 67] because they do not accurately 
reflect the probabilistic nature of electron arrangement.  

Two visual representations are commonly used to ad-
dress misconceptions about the probabilistic nature of 
electrons being located in orbitals. First, energy diagrams 
(Fig. 1, center-right) are commonly used at both the high 
school and undergraduate levels. They depict electrons 
with an up-spin or down-spin as arrows, and they use 
lines to show orbitals [67]. Energy diagrams are often 
used to illustrate hybridization [67]. Second, orbital dia-
grams (Fig. 1, right) are used at the undergraduate level, 
but only infrequently at the high school level. They show 
electron density functions rather than the electrons them-
selves [68, 69]. Such statistical models yield a density 
function that essentially describes the shape of an electron 
cloud that corresponds to the orbital of an atom.  

This review yielded specific questions about the use of 
Bohr models in undergraduate instruction. To address 
these questions, I interviewed college educators about 
their views on Bohr models. All college educators viewed 
Bohr models as historic rather than scientific models. 
Some of them were not aware that Bohr models are prev-
alent in high school curricula. The interviews suggested 
that college educators seem to expect that high school 
instruction addresses the shortcomings of Bohr models, 
although they acknowledged that misconceptions con-
sistent with the Bohr model are prevalent among under-
graduate students, which is consistent with the chemistry 
education literature [47, 67].  
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3.1.2 Implications for Chem Tutor 

Based on the review of chemistry education research and 
of chemistry curricula, the four visual representations 
depicted in Fig. 1 were included in the Chem Tutor cur-
riculum. Apart from the Bohr model, none of the visual 
representations are controversial with respect to their 
educational merit. The decision to include the Bohr model 
may be controversial because it has been blamed for mis-
conceptions [47, 67]. Yet, given that students encounter 
Bohr models in high school chemistry instruction, it 
seems important to help them understand the limitations 
of Bohr models so that they can incorporate more ad-
vanced concepts of atomic structure into their mental 
models [24, 70]. Hence, Chem Tutor includes Bohr models 
and features activities that highlight the limitations of this 
particular visual representation through comparisons to 
other representations (as detailed below). 

3.2 Step 2: Identify Representational Competencies 

Now that visual representations have been identified 
based on the fact that they depict domain-relevant con-
cepts, we need to ask what representational competencies 
students need in order to learn these concepts. Given the 
educational blind spot on representational competencies, 
I again recommend to use top-down approaches to ad-
dress this question.  

First, I recommend conducting a thorough literature 
review on representational competencies in general and 
of representational competencies in the target discipline. 
Literatures on domain expertise can further provide use-
ful insights into the function of visual representations in 
the target discipline. For example, some disciplines view 
visual representations as “training wheels” that make 
abstract concepts accessible to learners, but that are no 
longer used by experts [9]. In other disciplines, visual 
representations are considered a “visual language” that is 
essential for expert problem solving and in communica-
tion in scientific and professional communities [9].  

The literature review will yield a list of representation-
al competencies that are considered (often implicitly) to 
be important learning goals. For example, in “training 
wheel” disciplines, the ability to map a visual representa-
tion to abstract concepts may be a particularly important 
representational competency. In a “visual language” dis-
cipline, the ability to fluently use a given visual represen-
tation to solve a large variety of problems may be an im-
portant representational competency.  

Second, guided by the review, I recommend conduct-
ing a theoretical cognitive task analyses on educational 
materials [71, 72]. Cognitive task analysis is a method that 
uses interviews and observations to describe the 
knowledge and skills experts use to solve tasks. Cognitive 
task analysis can be used to describe which representa-
tional competencies are relevant for particular topics, 
concepts, and problem-solving tasks. It can also reveal 
additional competencies that students need to understand 
a specific concept given a particular visual representation.  

The outcome of Step 2 is an overview of representa-
tional competencies that students need in order to learn 
the target concepts. 

3.2.1 Representational Competencies in Chemistry 

My review of cognitive theories of learning (e.g., 7, 73-
75]), socio-cultural theories of learning (e.g., 76, 77]), re-
search on expertise [78,79], and the chemistry education 
literature (e.g., 4, 48]) suggests that two representational 
competencies play a particularly important role for chem-
istry learning: conceptual sense making of connections 
and perceptual fluency in connection making [80,81]. 

Conceptual sense-making of connections. Domain 
experts have the ability to conceptually make sense of con-
nections [4, 7, 9, 53, 55]: they can relate visual features of 
different representations that show corresponding con-
cepts. Sense-making processes are verbally mediated ex-
planation-based processes by which students reason 
about principles [73, 82]. When students conceptually 
make sense of connections, they seek to understand 
which features of different representations show the same 
information and how representations differ in what in-
formation they show. For example, in Fig. 1, both Lewis 
structure and Bohr model show the valence electrons as 
dots, but the Bohr model shows all electrons, whereas the 
Lewis structure shows only the valence electrons. Con-
ceptual sense making is important because it allows stu-
dents to integrate information shown by different repre-
sentations into one mental model about the target con-
cepts (e.g., the concept that valence electrons reside on the 
atom’s outer shell). The importance of conceptual connec-
tion-making processes is widely recognized in STEM ed-
ucation [54-56] and chemistry education [48, 49, 83]. 

Perceptual fluency in connection making. A second 
important representational competency is perceptual fluen-
cy in making connections among visual representations 
[78, 79, 84]. Experts can quickly and effortlessly map vis-
ual features of one representation to another. Perceptual 
fluency allows students to “just see” whether two visual 
representations show the same information and to com-
bine information from representations without any per-
ceived mental effort. For example, consider again the 
Lewis structure and Bohr model of oxygen shown in Fig. 
1. A student who is perceptually fluent will quickly see 
that the number of electrons on the outer shell of the Bohr 
model equals the number of valence electrons in the Lew-
is structure. Because the student makes these connections 
quickly and automatically, without much perceived men-
tal effort, he/she has the cognitive capacity to think about 
higher-order concepts. For instance, perceptual fluency 
might free cognitive capacity to think about the fact that 
oxygen, indicated by the “O” in the Lewis structure, is in 
the second row of the periodic table, and therefore has 
two shells, as shown in the Bohr model. The importance 
of perceptual connection-making processes is widely rec-
ognized in STEM education [4, 48, 81, 85] and chemistry 
education [48, 81, 86, 87].  

3.2.2 Implications for Chem Tutor 

The literatures just reviewed suggest that both conceptual 
sense making of connections and perceptual fluency in 
connection making are particularly important representa-
tional competencies in chemistry. Thus, it seems reasona-
ble to propose that Chem Tutor should provide instruc-
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tional support for students (1) to conceptually make sense 
of connections among representations that are typically 
used in chemistry education and in chemistry profession-
al practices, and (2) to become perceptually fluent in mak-
ing connections. Yet, the goal to develop separate types of 
instructional support for these two representational com-
petencies relies on the assumption that conceptual sense 
making and perceptual fluency in connection making are 
indeed different, distinguishable competencies. I investi-
gated the accuracy of this assumption in Step 3. 

3.3 Step 3: Test if Competencies are Distinct 
Competencies that Relate to Content Knowledge 

After having identified candidate representational com-
petencies, we need to empirically test whether these com-
petencies are distinct from one another, and whether they 
relate to the target content knowledge. To do so, I rec-
ommend developing and evaluating tests that assess the 
target representational competencies, to evaluate that the 
tests assess distinguishable competencies, and to test 
whether they indeed correlate with content knowledge. 

To develop the tests, I recommend a combination of 
top-down and bottom-up approaches. Top-down ap-
proaches can draw on the literature on representational 
competencies in the given discipline and / or cognitive 
task analyses conducted as part of Step 2. The literature 
can be used to develop the test items themselves. Bottom-
up approaches use empirical data obtained from inter-
views or think-aloud studies with advanced students and 
experts [88-90] to gain detailed insights into the nature of 
representational competencies and content knowledge. 
Top-down and bottom-up approaches can be combined 
by using the literature review to develop interview ques-
tions or coding schemes for empirical data.  

If the goal of the educational technology is to target 
multiple representational competencies (e.g., conceptual 
and perceptual connection making), the next step is to 
evaluate whether tests can differentiate between these 
representational competencies. To this end, I recommend 
conducting a factor analysis on data from students of the 
target population. Specifically, different factor models 
should be compared to test whether the different repre-
sentational competencies load on different (as opposed to 
the same) factors (hypothesis 1). For example, if the hy-
pothesis is that there are two distinguishable representa-
tional competencies, the factor analysis should compare a 
one-factor model that assumes that the competencies are 
not distinguishable and a two-factor model that assumes 
that the two competencies are distinguishable. 

Next, the goal is to test whether the representational 
competencies are associated with content knowledge (hy-
pothesis 2). To this end, I recommend conducting regres-
sion analyses that test whether students’ performance on 
the representational competency tests predicts their per-
formance on a content knowledge test. Significant, posi-
tive regression weights indicate that students with higher 
representational competencies have higher content 
knowledge. This correlation provides (correlational, not 
causal) evidence for the major assumption underlying the 
development of an educational technology for representa-

tional competencies: that supporting representational 
competencies can enhance students’ learning of content 
knowledge.  

3.3.1 Developing Tests for Chem Tutor 

To investigate whether conceptual sense making of con-
nections and perceptual fluency in connection making 
among multiple visual representations selected for Chem 
Tutor, I developed tests that assess these competencies. 
Further, to investigate whether these competencies relate 
to students’ content knowledge, I developed a test to as-
sess knowledge about atomic structure.  

Development of the conceptual connections test.  The 
conceptual connections test was designed to assess stu-
dents’ ability to make sense of connections among visual 
representations of atomic structure. To develop this test, I 
combined top-down approaches with bottom-up ap-
proaches. I used the review of research on representation-
al competencies from Step 2 (i.e., top-down) to develop 
materials for an interview study (i.e., bottom-up). The 
interview contained open-ended questions that presented 
participants with two visual representations at a time. For 
each representation pair, participants were asked two 
questions: (1) “What are similarities between [representa-
tion 1] and [representation 2] of [atom]?” and (2) “What 
are differences between [representation 1] and [represen-
tation 2] of [atom]?” Participants were five Ph.D. students 
who had experience as teaching assistants, and 21 under-
graduate students with varying levels of exposure to 
chemistry courses. All responses were transcribed.  

To develop a coding scheme for the interview data, I 
drew on the chemistry education literature and research 
on connection-making (i.e., top-down). These literatures 
provided descriptions of concepts related to atomic struc-
ture and common student misconceptions, and coding 
schemes for connection-making [11]. In addition, I re-
viewed the transcripts obtained from the interview study 
(i.e., bottom-up), so as to identify concepts they refer to 
when making connections among representations, as well 
as misconceptions about atomic structure. This approach 
yielded a matrix of surface-level connections, conceptual 
similarities, conceptual differences, inferences, and mis-
conceptions for seven chemistry concepts.  

Finally, building on this matrix, I developed a multi-
ple-choice test that assessed students’ ability to conceptu-
ally make sense of the similarities and differences be-
tween visual representations with respect to how they 
depict chemistry concepts. Specifically, correct choices 
used language adapted from correct explanations of con-
ceptual similarities, conceptual differences, and infer-
ences obtained from Ph.D. students and undergraduate 
students. Incorrect choice options were developed based 
on statements that corresponded to surface-level connec-
tions or misconceptions.  

Development of the perceptual connections test. The 
perceptual connections test was designed to assess stu-
dents’ ability to fluently translate among multiple visual 
representations of atomic structure. To this end, I com-
bined a top-down approach with a bottom-up approach. 
The top-down approach entailed reviewing Kellman and 
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colleagues’ research on perceptual connection making 
[86]. They provide students with one representation and 
ask them to select another representation that shows the 
same information from a number of choice options. The 
bottom-up approach entailed reviewing chemistry cur-
ricula to identify commonly used visual representations 
and commonly used atoms. Next, I created test items in 
which students were given one visual representation 
(e.g., a Bohr model), and a selection of six other visual 
representations (e.g., Lewis structure, energy diagram, 
orbital diagram). Their task was to select all other visual 
representations that show the same atom. So as to not 
force students to select any visual representations, they 
had the option to select “none of the above.”  

Development of the chemistry knowledge test. The 
chemistry knowledge test was designed to assess stu-
dents’ conceptual understanding of atomic structure re-
gardless of the representational competency involved. To 
this end, I combined a top-down and bottom-up ap-
proach. The top-down approach entailed reviewing the 
chemistry education literature on important concepts and 
common misconceptions related to atomic structure. Fur-
ther, I reviewed test items in chemistry curricula, as well 
as assessments used in introductory undergraduate 
chemistry courses. The bottom-up approach involved 
incorporating the concepts identified as part of the inter-
views with Ph.D. students and undergraduates, just de-
scribed. Based on these approaches, I developed multiple-
choice test items and open-ended items designed to as-
sess students’ knowledge about atomic structure.  

Test Evaluation. Next, the goal was to test whether the 
conceptual and perceptual connections tests assess distin-
guishable aspects of students’ representational competen-
cies (hypothesis 1), whether performance on the concep-
tual connections test is positively associated with chemis-
try knowledge (hypothesis 2a), and whether performance 
on the perceptual connections test is positively associated 
with chemistry knowledge (hypothesis 2b). To this end, 
the tests were administered to N = 72 undergraduate stu-
dents enrolled in an introductory chemistry course.  

To test hypothesis 1, I compared two factor models us-
ing SPSS AMOS. The two-factor model distinguished be-
tween conceptual sense making of connections and per-
ceptual fluency in making connections, whereas the one-
factor model did not. Following [91, 92], a model has a 
good fit if it has an RMSEA of < .06, a TLI and CFI of > 
.90, and a Cmin/df of < 2.5. Results show that the two-
factor model (RMSEA = .066, TLI = .94, CFI = .96, 
Cmin/df = 1.95) had a better model fit than the one-factor 
model (RMSEA = .107, TLI = .84, CFI = .88, Cmin/DF = 
3.46). Thus, the results are in line with hypothesis 1 and 
support the notion that conceptual sense making of con-
nections and perceptual fluency in connection making are 
distinguishable representational competencies.  

 To test hypotheses 2a and 2b, I conducted a regression 
analysis with students’ performance on the chemistry 
knowledge test as a dependent measure, and students’ 
performance on the conceptual and the perceptual con-
nections tests as predictors. Results showed that both per-
formance on the conceptual connections test (β = .338, p < 

.01) and performance on the perceptual connections test 
(β = .454, p < .01) were significant predictors of students’ 
performance on the chemistry knowledge test, explaining 
altogether 52.6% of the variance of students’ performance 
on the chemistry knowledge test. Thus, the results are in 
line with hypotheses 2a and 2b and support the assump-
tion that conceptual sense making of connections and 
perceptual fluency in connection making with the chosen 
visual representations relate to students’ knowledge 
about atomic structure. 

3.3.2 Implications for Chem Tutor 

Before we develop instructional support for different rep-
resentational competencies, we have to verify the as-
sumptions underlying this goal. For Chem Tutor, I first 
had to establish that conceptual sense making of connec-
tions between multiple visual representations of atomic 
structure and perceptual fluency in making connections 
are indeed distinguishable representational competencies. 
Furthermore, I had to verify the assumption that these 
representational competencies are related to students’ 
understanding of chemistry concepts related to atomic 
structure. The results from the test analysis support these 
assumptions and—consequently— the goal of developing 
separate learning activities that support students’ acquisi-
tion of representational competencies related to (1) con-
ceptual sense making of connections and (2) perceptual 
fluency in making connections. 

3.4 Step 4: Investigate Problem-Solving Behaviors 
Associated with Representational Competencies 

Building on the identification of distinguishable represen-
tational competencies, we can now design instructional 
supports that help students acquire these competencies. 
Effective instructional support should help students use 
visual representations adequately to solve problems. Ide-
ally, students should learn to use and construct visual 
representations in the same way as experts in the target 
discipline. Instructional support will be most effective if it 
focuses on problem-solving behaviors that students of the 
target population do not spontaneously engage in; if they 
did, they would not require instructional support for 
these behaviors. Furthermore, instructional support 
should help students overcome particular difficulties they 
are likely to encounter when solving problems with visu-
al representations. The goal of Step 4 is therefore to iden-
tify “desirable” problem-solving behaviors that (1) char-
acterize the representational competencies experts use to 
solve problems with visual representations but (2) that 
are uncommon or particularly difficult for students.  

To this end, I recommend combining top-down and 
bottom-up approaches to investigate how experts and 
students use visual representations to solve problems. 
Think-aloud studies and interviews with experts and stu-
dents can serve to identify problem-solving behaviors 
common among experts and students while they use 
premade visual representations or create the own repre-
sentations to solve problems (i.e., bottom-up). These 
problem-solving behaviors can be mapped to the repre-
sentational competencies and concepts from Step 2 (i.e., 
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top-down). Identifying problem-solving behaviors that 
are common among experts but not among students 
should be supported by the educational technology.  

When gathering data, a particular focus should be on 
identifying how experts and students attend to visual 
features that are conceptually relevant. Eye-tracking data 
[93-95] or a combination of eye-tracking and think-aloud 
techniques [96, 97] can provide useful information about 
visual attention behaviors. Visual attention behaviors that 
are associated with high-quality reasoning behaviors may 
indicate which visual features the educational technology 
should draw students’ attention to.  

In sum, the goal of Step 4 is to identify the “knowledge 
gap” that the educational technology seeks to close with 
respect to how students should use visual representations 
to solve problems in the target discipline. 

3.4.1 Problem-Solving Behaviors for Chem Tutor 

The design of Chem Tutor drew on a combination of 
think-alouds, interviews, and eye-tracking methods. I 
describe how these methods informed the conceptual 
sense-making and perceptual fluency-building problems. 

Conceptual sense-making. One goal the Chem Tutor 
is to present students with problems that help them en-
gage in conceptual reasoning about why two commonly 
used visual representations depict the same atom, how 
the representations differ in what they show about atoms, 
and how representations show corresponding infor-
mation about atoms. To inform the design of these prob-
lems, I investigated which concepts about atomic struc-
ture are particularly difficult for chemistry undergraduate 
students (research question 1). In addition, I was interest-
ed in identifying which reasoning behaviors are common 
among experts (i.e., Ph.D. students in chemistry) but un-
common in the target population (i.e., among undergrad-
uates; research question 2). Further, I investigated which 
visual attention behaviors indicate low and high quality 
reasoning about chemistry concepts (research question 3). 

To address these questions, I made use of the inter-
view study described above, in which Ph.D. students (n = 
5) and undergraduate students (n = 21) were asked to 
describe similarities and differences between visual rep-
resentations of atoms. As part of this study, students’ vis-
ual attention behaviors were recorded with an eye-
tracker. Students were asked to think about how to re-
spond to the interview question, indicate that they are 
ready to respond (allowing the experimenter to annotate 
the eye-tracking data), and then verbally respond to the 
interview question. This procedure has been evaluated in 
usability research on educational technologies, and has 
been shown to maintain the quality of the eye-tracking 
data while yielding valid insights in cognitive mecha-
nisms of problem solving [98]. To analyze the interview 
data, I used the matrix coding scheme described above. 

To address research question 1 (which concepts about 
atomic structure are particularly difficult for the target 
population), and research question 2 (which reasoning 
behaviors are common among Ph.D. students but not 
among undergraduates), I compared undergraduates to 
the Ph.D. students in the following way. I assumed that 

concepts and reasoning patterns are important if they 
occur frequently among Ph.D. students. Further, I as-
sumed that, if these concepts and reasoning patterns oc-
cur infrequently among undergraduate students, they are 
difficult. Hence, differences between undergraduate and 
Ph.D. students yield the “knowledge gap” that Chem 
Tutor would seek to close. I used chi-square tests to com-
pare the frequency with which undergraduates versus 
Ph.D. students mentioned the concepts and reasoning 
behaviors identified above. The analysis identified several 
reasoning behaviors that were more frequent among 
Ph.D. students than among undergraduate students. 

To explore which visual attention behaviors are associ-
ated with high quality reasoning about chemistry con-
cepts (research question 3), I considered visual attention 
measures that are commonly used in research on learning 
with visual representations. Specifically, I considered the 
frequency of switching between visual representations, 
because switching between conceptually relevant parts of 
the instructional materials is often used to indicate that 
students attempt to conceptually integrate these parts [99, 
100]. I computed switches between visual representations 
as the number of times an eye-gaze fixation on one repre-
sentation was followed by fixation on another representa-
tion. Further, I considered first-fixation durations and 
second-fixation durations on visual representations. First-
fixation durations are often considered to indicate initial 
processing of material [101-103], whereas second-fixation 
durations (i.e., re-inspecting the material after the first 
fixation) are considered to reflect intentional processing 
to integrate the information with previously attended 
information [101-103]. I computed first-fixation durations 
as the sum of fixation durations when students first at-
tended to a visual representation. I computed second-
fixation durations as the sum of durations of all except 
the first fixations on the representations.  

I then conducted regression analyses that tested 
whether the visual attention measures are predictive of 
students’ conceptual sense-making and reasoning about 
chemistry concepts (assessed based on the coding scheme 
described in section 3.3.1). Results from the regression 
analyses show that second-inspection durations are pre-
dictive of both productive and unproductive verbal rea-
soning behaviors. On the one hand, students may spend 
their inspection time to think about surface-level connec-
tions that are conceptually irrelevant, which reduces their 
chances of noticing conceptually relevant differences be-
tween visual representations. On the other hand, students 
may spend their inspection time to think about conceptu-
ally relevant differences between visual representations. 
Making sense of differences between representations 
leads students to think about inferences they can make 
about atoms in a way that goes beyond what the repre-
sentations explicitly show. Frequency of switching be-
tween representations was not predictive of students’ 
verbal reasoning about visual representations. Taken to-
gether, these findings suggest that it is the content of stu-
dents’ processing rather than what they visually attend to 
that predicts the quality of their reasoning about visual 
representations. It seems that reasoning about how given 
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visual representations differ with respect to which infor-
mation they depict about chemistry concepts is most im-
portant for students’ ability to make sense of connections. 

Perceptual fluency-building. Another goal of Chem 
Tutor is to present students with problems that help them 
become more efficient in their perceptual processing of 
visual representations so that they can make connections 
without having to invest much mental effort. In develop-
ing these problems, I drew on the principles established 
by prior research on perceptual learning, described 
above. According to Kellman and colleagues’ perceptual 
learning paradigm [75, 104, 105], fluency-building prob-
lems help students induce relevant visual features by ex-
posing them to many examples of visual representations. 
Students are aksed to select corresponding representa-
tions from choices that present contrasting cases. Con-
trasting cases vary irrelevant visual features that students 
are likely distracted by to draw their attention to features 
that are conceptually relevant for connection making. 

To identify which features the perceptual fluency-
building problems should include, I conducted an empir-
ical study that investigated which visual features lead 
students to make incorrect connections. Visual features 
that mislead students to make incorrect connections are 
the visual features that students must learn not to attend 
to. Hence, these visual features should be included in con-
trasting cases in perceptual fluency-building problems. 
For the study, prototypes of the perceptual fluency-
building problems were created. Each problem presented 
a visual representation of an atom (e.g., a Lewis structure 
of oxygen) and four choice options that showed atoms in 
one other visual representation (e.g., a Bohr model of car-
bon, a Bohr model of oxygen, a Bohr model of hydrogen, 
a Bohr model of chlorine). Students had to select which 
choice shows the same atom. The problems were created 
for all possible pairings of the four visual representations 
shown in Fig. 1, for 18 atoms (i.e., atoms in the first three 
rows of the periodic table). Participants were 65 under-
graduates enrolled in a chemistry course.  

To test which visual features lead students to make in-
correct connections, I defined which visual features each 
visual representation contains (e.g., the Bohr model of 
oxygen shows two shells, eight electrons, six valence elec-
trons). Second, I created contingency tables for each pair 
of two visual representations that mapped those visual 
features onto one another that denote incorrect mappings. 
For example, an incorrect mapping might be between the 
valence electrons shown in the Lewis structure and the 
total electrons shown in the Bohr model.  

The contingency tables for incorrect mappings allowed 
identifying which visual features students lead to incor-
rect connections. This analysis revealed a number of fea-
tures that account for students’ incorrect choices between 
pairs of representations. Overall, connections between 
representations that shared many features were easier 
than connections between representations that shared few 
features.  Further, for some pairs of representations, the 
direction of the translation mattered (e.g., given a Bohr 
model, select a Lewis structure versus given a Lewis 
structure, select a Bohr model). The analysis revealed 

why these visual features might be distracting. First, stu-
dents seem likely to misinterpret particular features. Sec-
ond, students seem to rely too strongly on some features, 
failing to take additional features into account. Finally, 
the analysis revealed particular difficulties students have 
with particular mappings among visual features.  

3.4.2 Implications for Chem Tutor 

For Chem Tutor’s conceptual sense-making problems, the 
findings imply that students should be prompted to think 
about the complementary functions of the different visual 
representations rather than about conceptually relevant 
similarities between them. Furthermore, it seems to be 
important to draw students’ attention away from surface-
level features that are not conceptually relevant. Instead, 
students should be prompted to make inferences about 
those aspects of chemistry concepts that are not directly 
shown in the visual representations.  

For Chem Tutor’s perceptual fluency-building prob-
lems, the findings yielded a number of visual features to 
be included in contrasting cases that help them correctly 
interpret the given visual features and use additional rel-
evant features to disambiguate the meaning of the given 
visual features. In addition, the findings suggested that 
certain visual representations are difficult for students, 
and therefore students may need to receive conceptual 
instruction about these visual representations before they 
work on perceptual fluency-building problems with these 
visual representations. Finally, the findings on the diffi-
culty of mappings yield insights into how best to se-
quence the perceptual fluency-building problems. 

3.5 Step 5: Iteratively Design and Pilot-Test the 
Educational Technology  

Building on the findings from Step 4 about what consti-
tutes desirable but difficult problem-solving behaviors, 
we can now develop the educational technology. In doing 
so, I recommend using a process that frequently iterates 
between design, pilot-testing, and re-design phases.  

Iterative design processes for the development of edu-
cational technologies are detailed elsewhere (e.g., 32, 34, 
106]), so I will review them only briefly. A first step is to 
sketch out problem-solving activities on paper. Paper-
based problems should be pilot-tested with students of 
the target population and reviewed by instructors. After 
incorporating findings from pilot-testing into paper-
based problems, they can be tested again. The second step 
is to build low-fidelity prototypes, which can be pilot-
tested with the target population, reviewed by instruc-
tors, and redesigned accordingly. Third, high-fidelity pro-
totypes can be developed, pilot-tested, reviewed, and 
redesigned, until a satisfactory result is reached. Finally, 
the prototypes should be turned into the final version by 
removing any remaining glitches and inconsistencies. 

3.5.1 Iterative Design Process for Chem Tutor 

The goal of the iterative design process for Chem Tutor 
was to develop an Intelligent Tutoring System (ITS) for 
undergraduate students that promotes learning of foun-
dational chemistry concepts through problem solving, 
specifically by helping them acquire the representational 
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competencies identified above. I used Cognitive Tutor 
Authoring Tools (CTAT; [107]), which facilitates iterating 
between design, pilot-testing, and redesign. CTAT sup-
ports the development of a different type of ITS than the 
traditional rule-based version, called example-tracing 
tutors [107]. Example-tracing tutors have the same func-
tionalities as traditional ITSs: they use a cognitive model 
of students’ problem-solving steps to provide individual-
ized step-by-step guidance at any point during the prob-
lem-solving process [27], detect multiple strategies a stu-
dent might use to solve a problem [107], and provide de-
tailed feedback and (on the student’s request) hints on 
how to solve the next step [108]. In contrast to traditional 
ITSs, example-tracing tutors use a cognitive model that is 
not based on production rules but instead rely on general-
ized examples of correct and incorrect problem solutions. 
Building on problem solutions to develop a cognitive 
model has several advantages. First, it allows to directly 
draw on the problem-solving behaviors (successful and 
unsuccessful ones) discovered in Step 4. Second, it allows  
for rapid iterations of prototyping and pilot-testing be-
cause changes to the cognitive model can be easily and 
quickly implemented and tested.  

In developing Chem Tutor, I followed the iterative de-
sign processes for the development of educational tech-
nologies just described. I engaged in several rounds of 
sketching out problems on paper, trying them out with 
undergraduate students, and reviewing them with chem-
istry instructors. I incorporated changes based on their 
feedback. Second, I built low-fidelity prototypes using 
CTAT. The low-fidelity prototypes allowed the user to 
solve problems, but did not yet include hints or error 
feedback functionalities. Again, I tested these prototypes 
with undergraduate students and reviewed them with 
chemistry instructors and made changes according to 
their suggestions. Furthermore, I observed errors made 
by undergraduate students and engaged in in-promptu 
interviews about what led them to make certain mistakes. 
This information was used to inform the design of error 
feedback messages. Third, and building on Step 4, I de-
veloped high-fidelity prototypes, which featured all func-
tionalities common to ITSs: detection of multiple solution 
paths, step-specific hints on demand, and error feedback 
based on detection of certain misconceptions. Again, the 
high-fidelity prototypes were tested with undergraduate 
students and reviewed by chemistry instructors. At this 
stage, pilot-testing focused on the way in which feedback 
and hints were provided to students, and on whether 
Chem Tutor detected common correct and incorrect prob-
lem-solving strategies. Based on findings from high-
fidelity prototyping, I developed the final version of 
Chem Tutor. 

3.5.2 Final Version of Chem Tutor 

The final version of Chem Tutor is available online 
(https://chem.tutorshop.web.cmu.edu). It provides a 
number of problem types that use the visual representa-
tions identified in Step 1, that target the representational 
competencies identified in Step 2, and that foster the 
problem-solving behaviors identified in Step 4. 

Introduction to Chem Tutor. Students first receive a 
brief introduction into the topic of atomic structure, and 
into the visual representations. Specifically, the introduc-
tion explains what information each of the visual repre-
sentations (see Fig. 1) show about atomic structure. To 
this end, it emphasizes which visual features show rele-
vant concepts and what inferences they allow about 
properties of the atom at the macroscopic level.  

In light of the findings from Step 4, particular attention 
was given to explaining how one particular visual repre-
sentation depicts atoms: orbital diagrams. To this end, the 
introduction section included an interactive exercise in 
which students plot imaginary location coordinates of 
electrons in a hydrogen atom, to illustrate how the orbital 
shape reflects the probabilistic nature of electron density 
(i.e., the likelihood of an electron occupying a certain 
space). The design of this problem was informed by a 
practice problem that one of the interviewed chemistry 
instructors uses to introduce orbital diagrams. Fig. 2 
shows a sequence of screen shots from this introductory 
tutor problem, illustrating that students are asked to re 
late what they know about atoms and electrons to the 
way in which the orbital diagram depicts the hydrogen 
atom. Furthermore, this sequence of screen shots illus-

Fig. 2. Introductory problem in which students construct an orbital 
diagram for hydrogen. Students first plot locations of electrons in a 
coordinate system. They are prompted to reason about the proper-
ties of the electron cloud and about the number of electrons it con-
tains.  
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Fig. 3. Example of a conceptual sense-making problem. Students first construct a different visual representation of the 

same atom, then receive sense-making prompts to reflect on differences and limiations of the two visual representations. 

Fig. 4. Example of a perceptual fluency-building probem. Students receive many rapid classification tasks. They are 
prompted to solve these tasks fast, based on perceptual strategies. The choice options use contrasting cases to empha-
size relevant visual features. Students receive immediate feedback. 
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trates how the student-generated plot of electron loca-
tions morphs into the 2-dimensional and then into the 3-
dimensional orbital diagram. 

Conceptual Sense-Making Problems. Chem Tutor 
provides problems designed to help students conceptual-
ly make sense of how different representations provide 
corresponding and complementary information about 
chemistry concepts. Fig. 3 shows an example problem in 
which students make sense of connections between the 
Bohr model and the energy diagram for the chlorine at-
om. Based on principles established by the review of prior 
research on conceptual sense making of connections car-
ried out as part of Step 2, the problems ask students to 
explicitly compare visual representations, and prompt 
students to self-explain connections between the visual 
representations. First, students are given the visual repre-
sentation of an atom (here, the Bohr model for chlorine) 
and are asked to use an interactive tool to construct a dif-
ferent representation of the same atom (the energy dia-
gram). Students receive error feedback while they are 
constructing the visual representations. The error feed-
back messages were designed based on the review of 
common student misconceptions about the given visual 
representations in Steps 1 and 2, on the observations of 
problem-solving behaviors in Step 4, as well as on obser-
vations from pilot testing in Step 5.  

Second, students are prompted to self-explain which 
concepts are depicted in both representations (e.g., both 
show the total number of electrons) or on what infor-
mation is shown in one representation but not in the other 
(e.g., the energy diagram shows the energy level of elec-
trons occupying each orbital, but the Bohr model does 
not). The self-explanation prompts in these problems use 
a fill-in-the-gap format with menu-based selection. Menu-
based prompts have been shown to support self-
explanation in several empirical studies with ITSs [109-
111], and have been shown to be more effective in en-
hancing learning outcomes than open-ended prompts [17, 
112, 113]. The self-explanation prompts were designed in 
alignment with prior research on learning with multiple 
representations, and on the observation of problem-
solving behaviors in Step 4. Specifically, based on the 
findings on students’ verbal reasoning strategies, the self-
explanation prompts were designed so as to draw stu-
dents’ attention to the differences between visual repre-
sentations. Further, in light of the observation that Bohr 
models are used in high school but not at the undergrad-
uate level (see Step 1), the self-explanation prompts for 
this particular problem (i.e., making sense of connections 
between the Bohr model and the energy diagram) were 
designed to draw students’ attention to limitations of the 
Bohr model. Also, the sense-making problems focus on 
those concepts that Ph.D. students were shown to men-
tion more frequently than undergraduates in (see Step 4). 
Finally, the wording of the prompts was based on actual 
student statements obtained in Step 4.  

Perceptual Fluency-Building Problems. Chem Tutor 
provides problems that foster inductive learning process-
es to help students develop perceptual experience in mak-
ing connections among multiple visual representations. 

Fig. 4 shows two example problems in which students are 
presented with one visual representation and have to se-
lect one out of four representations that shows the same 
atom. These two examples illustrate how Chem Tutor’s 
perceptual fluency-building problems embody principles 
for perceptual learning, identified as part of the review of 
prior research in Step 2. First, the perceptual problems are 
designed to foster non-verbal, inductive learning process-
es. Each problem involves a one-step discrimination and 
classification task, and students receive numerous of 
these problems in a row. To foster non-verbal rather than 
verbal strategies, Chem Tutor prompts students to solve 
these problems fast, without overthinking them. Second, 
students receive immediate correctness feedback. Third, 
the perceptual fluency-building problems embody the 
contrasting cases principle because the four alternative 
representations emphasize features that students should 
learn to pay attention to (e.g., an incorrect representation 
might show the same number of shells as the correct rep-
resentation but a different number of valence electrons). 
In choosing the alternative representations, I drew on the 
results from the observations of problem-solving behav-
iors in Step 4: the different representations show varia-
tions of irrelevant features and contrast visual features 
that provide relevant information (e.g., geometry, loca-
tion of the local charges). In summary, the perceptual flu-
ency-building problems are designed to help students 
become faster and more efficient at extracting relevant 
information from visual representations based on repeat-
ed experience with a large variety of problems.  

4.6 Step 6: Evaluate Effectiveness of Components 
that Support Representational Competencies 

The key assumption in designing different types of in-
structional support for the target representational compe-
tencies is that each type of support will enhance students’ 
learning of content knowledge. To empirically evaluate 
this assumption, I recommend conducting an experiment 
under controlled conditions to test whether different 
types of instructional support for the identified represen-
tational competencies enhance students’ learning of the 
target domain knowledge. To this end, the experiment 
should test the hypothesis that adding support for each of 
the representational competencies enhances the effective-
ness of the educational technology. Ideally, students 
should be randomly assigned to different versions of the 
educational technology that do or do not contain the 
components that support students’ acquisition of repre-
sentational competencies. Students’ domain knowledge 
should be assessed before and after the intervention. The 
hypothesis is supported if students in the experimental 
condition with instructional support for the representa-
tional competencies show higher learning gains than stu-
dents in the control condition without such support.  

4.6.1 Controlled Evaluation of Chem Tutor 

For Chem Tutor, the main underlying assumption is that 
conceptual sense-making problems designed to enhance 
students’ ability to make sense of multiple visual repre-
sentations of atoms, and perceptual fluency-building 
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problems designed to enhance students’ perceptual flu-
ency in making connections will foster students’ concep-
tual understanding of atomic structure. To test this as-
sumption, I conducted a controlled experiment that tested 
the hypothesis that a version of Chem Tutor that provides 
conceptual and perceptual problems enhances students’ 
learning of chemistry knowledge more than a version of 
Chem Tutor without these problems. 

117 undergraduate students participated in the exper-
iment (for a detailed description, refer to [114]). The ex-
periment used a 2 (conceptual sense-making problems: 
yes / no) x 2 (perceptual fluency-building problems: yes 
/ no) experimental design to investigate the hypotheses. 
Students were randomly assigned to one of four condi-
tions, which differed in the components they contained. 
All students worked through Chem Tutor’s introduction. 
Students in the no-conceptual / no-perceptual condition 
worked on problems designed to resemble regular text-
book exercises. In these problems, they used only one 
visual representation at a time and did not receive sup-
port for connection making. Students in the conceptual / 
no-perceptual condition worked on regular problems and 
conceptual connection-making problems. Students in the 
no-conceptual / perceptual condition worked on regular 
problems and perceptual connection-making problems. 
Students in the conceptual / perceptual condition worked 
on regular problems, conceptual connection-making 
problems, and perceptual connection-making problems. 
Students’ chemistry knowledge was assessed before and 
after their work with Chem Tutor.  

Results revealed significant learning gains, F(2,232) = 
37.31, p < .01, p. η² =.24. Results show that the main effect 
of conceptual sense-making problems was not significant, 
F(1,109) = 1.39, p > .10. There was a positive main effect of 
perceptual fluency-building problems, F(1,109) = 6.28, p < 
.05, p. η² =.06. The interaction of conceptual and percep-
tual support was significant, F(1,109) = 4.05, p < .05, p. η² 
=.04, such that perceptual support was effective only if 
provided in combination with conceptual support: Stu-
dents who did not receive conceptual sense-making prob-
lems had significantly lower learning outcomes if they 
received perceptual support than without perceptual 
support, F(1,110) = 9.34, p < .01, p. η² =.08. By contrast, 
students who received conceptual support had signifi-
cantly higher learning outcomes if they received percep-
tual support than without perceptual support, F(1,110) = 
9.34, p < .01, p. η² =.08. Finally, there was a marginally 
significant advantage of the conceptual / perceptual con-
dition over the no-conceptual / no-perceptual condition, 
F(1,110) = 2.69, p = .10, p. η² =.05.  

These results support the hypothesis that conceptual 
and perceptual problems enhance the effectiveness of 
Chem Tutor. (A detailed discussion of the interaction ef-
fect is provided in [114].) 

4.6.2 Implications for Chem Tutor 

The experiment tested the overall assumption that 
providing students with conceptual sense-making prob-
lems and with perceptual fluency-building problems 
would enhance their learning of chemistry. The results 

are in line with this assumption: combining support for 
sense-making of connections and for perceptual fluency 
enhances their learning of chemistry. 

4.7 Step 7: Evaluate Effectiveness of Support for 
Representational Competencies in the Field 

A limitation of any controlled experiment is that it likely 
does not represent the context for which the educational 
technology was designed. The experiment with Chem 
Tutor, for example, was conducted in a research lab, even 
though Chem Tutor was designed for the use in introduc-
tory undergraduate courses. Therefore, a final step is to 
evaluate the educational technology in the field. To this 
end, the experiment should test the hypothesis that the 
educational technology enhances students’ learning of the 
content knowledge in the target educational context. A 
field evaluation should assess students’ domain 
knowledge before and after they work with the educa-
tional technology in the target educational context. If pos-
sible, a control condition that corresponds to “business as 
usual” should not receive the educational technology. 
Instead, the students in the control condition may work 
on regular instructional activities. The hypothesis is sup-
ported if students in the experimental condition show 
significant learning gains. 

4.7.1 Field Evaluation of Chem Tutor 

Even though the controlled experiment just described 
established the effectiveness of the different modules in 
Chem Tutor, it remains an open question whether Chem 
Tutor is effective in the target context. To address this 
question, I conducted a field study.  

The tests were the same as the ones used in the con-
trolled experiment, described in Step 6. Participants were 
62 undergraduate students enrolled in a general chemis-
try for non-science majors. All students worked on intro-
duction, regular problems, conceptual sense-making 
problems, and perceptual fluency-building problems, 
which corresponds to the most successful version of 
Chem Tutor from the experiment in Step 6. Students ac-
cessed all materials (i.e., Chem Tutor and the tests) online, 
with a personal user account that was created for the 
purpose of the study. Students were invited to participate 
in the study one month before semester end. Students 
were free to use the system at any time and to take breaks 
whenever they wanted to, but they had to finish their 
work by the end of the semester. Results showed signifi-
cant learning gains, F(2,122) = 10.38, p < .01, p. η² =.15. 

4.7.1 Implications for Chem Tutor 

The field study suggests that working with Chem Tutor 
yields significant and large learning gains. These results 
were obtained in a natural context, in which undergradu-
ate students used Chem Tutor as they normally would 
use an online educational technology as part of a chemis-
try course. Thus, the findings suggest that Chem Tutor 
may add value to common undergraduate chemistry in-
struction: supporting students’ representational compe-
tencies can enhance their learning of chemistry 
knowledge in the educational context the technology was 
designed for. 
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4 CONCLUSION 

Visual representations are ubiquitous learning tools 
across all STEM disciplines [1, 2]. Yet, learning with visu-
al representations is difficult because students often face 
the representation dilemma: they have to learn new content 
from new visual representations [13]. Their learning of 
content knowledge therefore depends on their representa-
tional competencies; that is, the ability to understand how 
visual representations depict the to-be-learned content 
and to use visual representations for problem solving [1, 
2, 14]. Much research documents students’ difficulties in 
acquiring representational competencies [6-8, 10, 11], 
which impedes their success in STEM disciplines [16, 18, 
58, 74, 85, 115-118]. Instructors and content developers 
have an educational blind spot about representational com-
petencies and are often not aware of students’ difficulties 
in acquiring representational competencies and tend to 
assume that students “see” what a visual representation 
means [6-8, 15]. Given the critical role of representational 
competencies, it is important that to design educational 
technologies that support representational competencies.  

Existing design frameworks do not provide adequate 
guidance for the development of educational technologies 
that support representational competencies. One the one 
hand, design frameworks for educational technologies 
lack a focus on representational competencies. Due to the 
educational blind spot about representational competen-
cies, the emphasis on bottom-up (i.e., learner-centered, 
user-centered) methods in educational technology 
frameworks may be inadequate for the design of support 
for representational competencies. On the other hand, 
frameworks for representational competencies do not 
describe detailed step-by-step processes to align instruc-
tional support with specific demands of the target disci-
pline and educational context.  

To close this gap, the goal of this paper was to describe 
a new design framework for educational technologies 
that provide instructional support for representational 
competencies (SUREC). Compared to prior frameworks 
for educational technologies, the SUREC framework puts 
a stronger emphasis on top-down approaches, so as to 
ensure that learning obstacles related to representational 
competencies receive attention in the design process. 
Compared to prior frameworks for representational com-
petencies, the SUREC framework provides an iterative 
step-by-step process that can be used to align the educa-
tional technology with specific difficulties students have 
with representational competencies in the target disci-
pline and with educational goals and educational practic-
es of the target discipline. Therefore, the SUREC frame-
work closes the gap between prior frameworks for educa-
tional technologies and prior frameworks for representa-
tional competencies. I illustrated the SUREC framework 
at the example of an ITS for undergraduate chemistry: 
Chem Tutor. Data from a controlled lab-based evaluation 
and a field evaluation suggests that the SUREC frame-
work yielded a successful educational technology. 

The SUREC framework can be used for other STEM 
disciplines than chemistry and for additional representa-
tional competencies than the ones the present Chem Tu-

tor problems focus on. Because representational compe-
tencies are a critical aspect of students’ learning of content 
knowledge across all STEM discipline, the goal of devel-
oping educational technologies for representational com-
petencies is relevant across STEM disciplines. The itera-
tive step-by-step approach ensures that the educational 
technology aligns with the specific demands of the target 
discipline. This is important because the way in which 
visual representations are used varies by discipline [6, 8] 
because the design of the visual representations them-
selves as well as how they are used within the discipline 
is shaped by the cultural history of discipline discourse [4, 
6, 53, 76]. Even though I illustrated the SUREC frame-
work in chemistry and further illustrations of the success 
of the SUREC framework in other disciplines are pend-
ing, the fact that chemistry is similar to many other STEM 
disciplines suggests that the SUREC framework may be 
widely applicable. In particular, chemistry instruction 
heavily relies on multiple visual representations because 
different visual representations provide complementary 
information about key concepts. This role of visual repre-
sentations is similar to instruction in other STEM disci-
plines [1, 2, 14, 15, 115].  

In sum, the SUREC framework closes a gap in prior 
design frameworks by describing an iterative, step-by-
step process to ensure that educational technologies help 
students acquire representational competencies that are 
specific to the target discipline. Visual representations are 
pervasive in all STEM disciplines, and students’ docu-
mented difficulties in learning with visual representations 
impede their success in STEM. The SUREC framework 
may have a significant impact on STEM education be-
cause (1) educational technologies that enhance students’ 
representational competencies have the potential to en-
hance students’ learning of content knowledge in a varie-
ty of STEM domains, and (2) because such technologies 
can be easily disseminated to large student populations 
via course managements such as Moodle.  
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