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a b s t r a c t

Research shows that multiple representations can enhance student learning. Many curricula use multiple
representations across multiple task types. The temporal sequence of representations and task types is
likely to impact student learning. Research on contextual interference shows that interleaving learning
tasks leads to better learning results than blocked practice, but this research has not investigated
whether it matters onwhich dimension we interleave learning tasks. Many educational materials include
multiple task types and multiple representations. Should we interleave representations or task types?
We conducted a classroom experiment to investigate the effects of interleaving task types (while
blocking representations) and interleaving representations (while blocking task types). The participants
(158 5th- and 6th-graders) worked with a corresponding version of an intelligent tutoring system for
fractions. Our results show an advantage for interleaving task types over interleaving representations.
These results extend prior work on contextual interference by showing that this effect is sensitive to the
dimension being interleaved. We also extend the literature on learning with multiple representations by
investigating the effect of interleaved practice with different representations. The results provide guid-
ance to designers of complex curricula.

Published by Elsevier Ltd.

1. Introduction

Graphical representations are universal educational tools: flow
diagrams are used in programming, schemas and tree diagrams in
biology, charts and graphs in mathematics e to mention just a few
examples. Realistic learning materials usually include learning
tasks that vary on several dimensions: they use multiple graphical
representations over a sequence of multiple task types. The goal in
using multiple graphical representations is to promote robust
knowledge that can be transferred to unfamiliar tasks and that lasts
over time (see Koedinger, Corbett, & Perfetti, in press) by sup-
porting conceptual understanding of the different representations,
and by enhancing procedural knowledge covered across multiple
task types.

In areas where learners engage in extended problem-solving
practice, instructors and instructional designers must decide how
to sequence representations (for example, in the domain of frac-
tions, circle diagrams, and number lines) and task types (for
example, finding equivalent fractions, comparing fractions, and
adding fractions). Should they interleave graphical representations

while blocking task types, or should they interleave task types
while blocking representations? What sequence will lead to the
most robust learning gains? The decision of how to sequence task
types and representations is likely to influence learners’ acquisition
of robust conceptual and procedural knowledge.

The question of whether to interleave representations or task
types is not only of practical importance. Advantages for learning
with multiple representations are well-documented. However, this
research has not yet investigated the effects of interleaved practice
with multiple representations. The literature on contextual inter-
ference is relevant as it has demonstrated that the temporal
sequence of learning tasks affects students’ robust learning (Battig,
1972; Schmidt & Bjork, 1992): interleaving different learning tasks
(rather than blocking them) leads to better long-term retention and
better performance on transfer tests. However, this research has
not yet investigated whether the dimension on which the learning
tasks are interleaved (e.g., task type or representation) matters. The
question of which dimension we should interleave is therefore of
both practical and theoretical relevance.

In this paper, we describe a classroom experiment that
compares the effect of interleaving graphical representations to the
effect of interleaving task types on students’ robust learning of
fractions. Specifically, we conducted an experiment that contrasts
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the effect of interleaving multiple graphical representations while
blocking task types to the effect of interleaving task types while
blocking multiple graphical representations. We assessed students’
robust learning of fractions with regard to the effectiveness and
efficiency of conceptual knowledge of fractions representations and
their procedural knowledge with fractions operations. To ensure
the ecological validity of our results, the experiment was carried
out in classrooms in the context of a proven educational tech-
nology, namely, Cognitive Tutors (Koedinger & Aleven, 2007;
Koedinger & Corbett, 2006). Cognitive Tutors pose rich problem-
solving tasks and allow the use of interactive graphical represen-
tations. Cognitive Tutors are used in a large number of classrooms
across the United States (Corbett, Koedinger, & Hadley, 2001;
Koedinger & Corbett, 2006) and therefore represent a realistic
scenario for mathematics instruction. Specifically, we used a web-
based tutoring system that covers a wide range of topics for early
fractions learning. The system uses a number of interactive
graphical representations of fractions (i.e., the commonly used
number line, circle, and set).

Before describing the experimental study in detail, we discuss
relevant literature on learning with multiple representations and
on learning with graphical representations of fractions, as well as
the research on the contextual interference effect.

1.1. Learning with multiple representations

Well-designed representations are powerful learning tools
because they emphasize crucial conceptual aspects of the learning
material (Ainsworth, 2006). Further, skillful and flexible use of
representations (e.g., in the context of problem solving) is consid-
ered a key aspect of expertise in complex domains (Goldman,
2003), including mathematics (Common Core State Standards
Initiative, 2010; Kilpatrick, Swafford, & Findell, 2001; National
Council of Teachers of Mathematics, 2000, 2006; National
Mathematics Advisory Board Panel, 2008) and science (Kozma,
2003; National Research Council, 2002; National Science Teachers
Association, 2009).

Research in a variety of domains has demonstrated thatmultiple
representations have the potential to substantially promote
learning (e.g., Ainsworth, Bibby, & Wood, 1998; Eliam & Poyas,
2008; Lewalter, 2003; Rasch & Schnotz, 2009; Schnotz & Bannert,
2003; Seufert, 2003). However, the majority of the research on
learning with multiple representations has investigated the bene-
fits of pairing text and graphics used for a single task type (e.g.,
Ainsworth, Bibby, &Wood, 2002; Bodemer & Faust, 2006; Bodemer,
Ploetzner, Feuerlein, & Spada, 2004; Butcher, 2006; Eliam & Poyas,
2008; Lewalter, 2003; Rasch & Schnotz, 2009; Seufert, 2003).
Furthermore, in most of the research on learning with multiple
representations, the different representations are provided
together, for instance, text and graphic side-by-side. Many realistic
curricula (especially in mathematics) are more complex: they
integrate multiple graphical representations that are used inter-
changeably across multiple task types over an extended period of
time. Often, the graphical representations are sequenced across
learning tasks (i.e., only one graphical representation is provided
per learning task, but different graphical representations are
provided across multiple learning tasks). Typical fractions instruc-
tion, for example, includes a variety of graphical representations,
each of which conveys a slightly different conceptual interpretation
of fractions. For instance, circles depict fractions as parts of awhole,
number lines depict fractions as measures, and sets depict fractions
as ratios (Charalambous & Pitta-Pantazi, 2007; Cramer, Behr, Post, &
Lesh, 1997a, 1997b; Lamon, 2005). Our own informal review of
commonly used U.S. elementary and middle-school mathematics
curricula for fractions (Bennett, 2004; Fitzgerald, Lappan, & Fey,

2004; Hake, 2004; Kilpatrick et al., 2001; Lappan, Fey, &
Fitzgerald, 1998) showed that these curricula employ a rather
wide variety of graphical representations, and that each of these
graphical representations is commonly used across a variety of task
types.

Several studies have found benefits for learning with graphical
representations of fractions. For example, Mack (1995) reports on
a case study that showed that graphical representations such as
circles can help students overcome misconceptions. The repre-
sentations help students relate their burgeoning formal knowledge
of fractions to their existing informal knowledge of sharing and
dividing. The Rational Number Project curriculum uses a variety of
representations, including circles, number lines, chips, and symbols
(Cramer, Wyberg, & Leavitt, 2009). In a large-scale experimental
study, this curriculumwas shown to significantly improve students’
understanding of fractions, compared to a standard curriculum
(Cramer, Post, & delMas, 2002). A curriculum that emphasizes
various linear representations of fractions, developed by Moss and
Case (1999), was shown to be more effective than a standard
curriculum for the fractions topics that were covered. Caldwell
(1995) argues, based on a case study with 5th- and 6th-graders,
that area models of fractions are useful learning tools. Yang and
Reys (2001) describe the use of number lines in their classrooms
to illustrate the importance of using graphical representations of
fractions in helping students understand rational number concepts.
Finally, in our own experimental study, we found that students
working with a version of an intelligent tutoring system that uses
multiple graphical representations of fractions learn more deeply
than students who work with a system version that presents only
a single graphical representation, although only when prompted to
reflect on how the graphical representations of fractions (e.g., half
of a circle) relate to the symbolic representation (e.g., 1/2) (Rau,
Aleven, & Rummel, 2009). Although the studies on learning with
multiple graphical representations of fractions have typically
employed graphical representations across a variety of task types,
they have not systematically investigated the effects of different
practice schedules of graphical representations.

Taken together, research both from educational psychology and
mathematics education support the notion that learning with
multiple (graphical) representations can help students’ learning.
However, this research has not investigated the effects on students’
learning of interleaving or blocking representations.

1.2. Research on the contextual interference effect

The literature on contextual interference gives reason to believe
that the decision of whether to interleave graphical representations
or task types is likely to influence students’ robust learning of
fractions. Generally, the results from contextual interference
research have demonstrated that “interleaved practice” leads to
better learning results than “blocked practice” (Battig, 1972;
Schmidt & Bjork, 1992). In this research, the independent variable
has typically been whether learning tasks were presented in
“blocks” of the same type (e.g., task 1 e task 1 e task 1 e task 2 e

task 2e task 2e task 3e task 3e task 3), or whether learning tasks
of different types were interleaved (e.g., task 1 e task 2 e task 3 e

task 1 e task 2 e task 3 e task 1 e task 2 e task 3). The contextual
interference effect has been demonstrated in a variety of domains
including vocabulary learning (Bahrick, Bahrick, Bahrick, & Bahrick,
1993; Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; Pashler, Rohrer,
Cepeda, & Carpenter, 2007), motor tasks (Hebert, Landin, & Solmon,
1996; Li & Wright, 2000; Meiran, 1996; Meiran, Chorev, & Sapir,
2000; Schmidt & Bjork, 1992; Schneider, 1985; Simon & Bjork,
2001), and cognitively more complex tasks such as solving
algebra problems in mathematics (Rohrer & Taylor, 2007; Taylor &
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Rohrer, 2010), troubleshooting (de Croock, Van Merriënboer, &
Paas, 1998; Van Merriënboer, Schuurman, de Croock, & Paas,
2002), and in decision-making tasks (Helsdingen, van Gog, & Van
Merrienboer, 2011). However, this research has not investigated
whether the dimension onwhich the learning tasks are interleaved
(e.g., representation or task type) matter. In other words, it remains
an open question whether problem solving with multiple repre-
sentations is more effective when representations are interleaved
or when dissimilar task types are interleaved.

Two explanations have been offered for the common finding
that interleaving learning tasks leads to more robust learning than
blocking them. First, it has been argued that when working on
interleaved learning tasks, learners have to reactivate the knowl-
edge needed to solve each learning task more often than when
working on blocked learning tasks (De Croock, Van Merrienboer, &
Paas, 1998; Lee & Magill, 1983, 1985; Sweller, 1990). Reactivation is
likely to occur more frequently with interleaved task sequences
than with blocked task sequences. In blocked task sequences, the
knowledge used in one learning task can often be used in the next
task. Some or all of it can presumably be kept in working memory
across task boundaries, and does not have to be reactivated. In
interleaved task sequences, by contrast, the required knowledge
more often needs to be retrieved from long-term memory. Cogni-
tive theories such as ACT-R (Anderson, 1993, 2002) hold that
repeated retrieval strengthens associations between cues and
associated elements in long-termmemory. Reactivating knowledge
by retrieving it from long-term memory therefore increases the
likelihood that this knowledge can be recalled later on.

An alternative explanation for the advantages of interleaving is
that it helps students to abstract knowledge from different learning
tasks presented consecutively (De Croock et al., 1998; Shea &
Morgan, 1979). Abstraction requires that important knowledge
from the previous task is still in working memory when the new
task is “loaded” into working memory (e.g. by reading the task
instructions).When knowledge related to different tasks is active in
working memory, the student can compare the knowledge relevant
to the respective learning tasks, consciously or unconsciously. By
comparing across learning tasks, learners may see more clearly
which task properties are key and which are incidental, thereby
directing learners’ attention to processes relevant to knowledge
construction (Bannert, 2002; Paas & Van Gog, 2006; Van
Merriënboer et al., 2002) and helping them abstract the knowl-
edge common to consecutive learning tasks. Encountering
dissimilar learning tasks back-to-back occurs frequently in inter-
leaved task sequences, but infrequently in blocked task sequences.
We note that the two explanations are not mutually exclusive and
that in a realistic learning sequence both learning mechanismsmay
be active. It may be, however, that situations that are most
conducive to reactivation may not be most conducive to abstrac-
tion, as discussed further below.

1.3. Research questions

Generally, in any domain that uses multiple graphical repre-
sentations across multiple task types, students should acquire
conceptual understanding of the representations used, that is, the
ability to interpret and construct the representations and to use
representations to make sense of domain-relevant problems. For
instance, in the case of fractions, students should be able to use
a circle diagram to answer the question: “What fraction of the pizza
is left?” We use the term “representational knowledge” to denote
this kind of knowledge. Furthermore, students should acquire
procedural knowledge of the operations covered by the learning
material, such as finding equivalent fractions or comparing

fractions, both with and without representations (“operational
knowledge”).

The goal of our classroom experiment is to investigate the
impact of interleaving learning tasks on two different dimensions
with regard to students’ acquisition of robust knowledge of frac-
tions, which includes both representational and operational
knowledge. In particular, should learners frequently switch
between task types while switching infrequently between repre-
sentations (e.g., A1 e A2 e A3 e B1 e B2 e B3 e C1 e C2 e C3,
where A, B, and C are different representations, and the numbers
stand for three different task types)? Or should learners frequently
switch between representations while infrequently switching
between task types (e.g., A1 e B1 e C1 e A2 e B2 e C2 e A3 e B3 e

C3)? We know of no studies that have addressed this question, yet
as we have argued, it is of both practical and theoretical
importance.

How, based on the theoretical accounts for the contextual
interference effect described above, might one expect interleaving
representations or task types to affect students’ acquisition of
robust knowledge of fractions? It is difficult to make a prediction,
because (1) there are substantial differences in individual students’
developmental trajectories, and (2) robust knowledge of fractions is
a complex construct. Based on the theoretical accounts of contex-
tual interference just discussed, however, we hypothesize that it
will be most effective to interleave learning tasks along the dimension
with the greatest variability, that is, the dimension along which the
learning tasks vary the most from task to task. We hypothesize that
the task types (e.g., equivalent fractions, fraction comparison,
fraction addition, etc.) are more variable than the graphical repre-
sentations we use in our instructional material (i.e., circles, sets,
and number lines).

Arguably, the different task types used in our experiment are
more saliently different than multiple representations for several
reasons. First, the different task types require students to apply
different operations (such as finding equivalent fractions, or adding
fractions). By contrast, the different representations provide
different conceptual views on the task at hand (by depicting
a fraction as a shaded part of a circle, or as a dot on a number line),
and the conceptual differences (i.e., fractions as parts of a whole, or
fractions as a measure) might be difficult to discern for novice
learners. Second, the graphical representations are designed to be
intuitive: graphical representations typically employ perceptual
processes in an effective and easy-to-understand way. They may
also be intuitive in the sense that they connect to informal prior
knowledge, such as, in the domain of fractions, everyday notions of
sharing and dividing equally. In order to use graphical represen-
tations, students are not expected to engage in explicit reasoning
about the properties of the representations. The different task types
covered in our experiment, on the other hand, require students
explicitly to use different procedures to solve the task. Due to these
properties of graphical representations and task types, we expect
that the conceptual differences between themwill not be as salient
as the differences between task types. For this reason, we anticipate
that task types are the more variable dimension, compared to
graphical representations.

We expect that interleaving tasks types on the more variable
dimension will give students better opportunities for reactivation
and (to a certain degree) for abstraction. Students are expected to
reactivate (and thereby strengthen) any knowledge that is not
shared between consecutive learning tasks. We expect this reac-
tivation process to happen more frequently when learning tasks
differ on the more variable dimension. The more dissimilar
consecutive learning tasks are, the greater the need for reactivation,
and (consequently) the higher the chance that interleaved practice
will increase students’ acquisition of robust knowledge. Therefore,
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interleaving learning tasks on the most variable dimension may be
most conducive to reactivation.

Abstraction may be more likely to occur when learning tasks are
interleaved on a moderately variable dimension. Consecutive tasks
need to be sufficiently dissimilar so that students can compare the
knowledge associated with the different tasks; without dissimi-
larities, there is nothing to abstract across. On the other hand, it is
crucial for abstraction to occur that the consecutive learning tasks
share some common knowledge that can be abstracted from them.
If the learning tasks are too dissimilar, the knowledge required to
solve them may not be similar enough for students to see the
correspondences to abstract from the learning tasks, so that
abstraction cannot occur. In other words, if abstraction is the
mechanism by which the interleaving of learning tasks leads to
better learning, higher variability of consecutive learning tasks
should not always lead to higher learning gains. Rather, there might
be an optimal level of variability in learning tasks, such that
consecutive learning tasks are similar enough to allow for
abstraction, but dissimilar enough so that learners are likely to
abstract knowledge from them.

Given that the arguments presented above are not specific to
representational knowledge or operational knowledge, we expect
that interleaving task types will have a stronger effect than inter-
leaving representations both on representational knowledge and
on operational knowledge.

The present classroom experiment aims at investigating the
effect of blocking graphical representations versus interleaving
graphical representations on students’ robust knowledge of frac-
tions. We assess robust knowledge of fractions both with regard to
the effectiveness and efficiency of students’ knowledge. Both are
educationally relevant measures. Effectiveness measures solely
take into account students’ increase in performance over time, as
measured by their score on repeated administration of similar test
forms (e.g., average scores across multiple test items). However,
performance alone is an incomplete measure of students’ learning:
many tests also include time constraints, in part because students
are expected to become faster at performing tasks that they have
mastered (Koedinger et al., in press). We expect that, as they learn,
students become more efficient at solving a task: the acquisition of
robust knowledge should be reflected not only in performing
better, but also in performing faster. We predict that interleaving of
task types while blocking graphical representations (int-types), as
compared to interleaving of graphical representations while
blocking task types (int-reps), will lead to: more effective repre-
sentational knowledge (hypothesis 1a); more efficient representa-
tional knowledge (hypothesis 1b); more effective operational
knowledge (hypothesis 2a); more efficient operational knowledge
(hypothesis 2b).

2. Methods

2.1. Participants

The study involved 158 students in grades 5 and 6, aged 9e12
years, from 16 classes of a total of three schools. Students
participated in the study during their regular mathematics
instruction. All schools were located in the greater Pittsburgh area.

2.2. Materials

2.2.1. Fractions Tutor
Students worked with different versions of a web-based intel-

ligent tutoring system for fractions designed and created specifi-
cally for this study. The Fractions Tutor is a type of Cognitive Tutor,
as mentioned. Cognitive Tutors are grounded in cognitive theory

and artificial intelligence. They pose rich problem-solving tasks to
students and provide individualized support at any point during
the problem-solving process. In a variety of research studies,
Cognitive Tutor courses for mathematics have been shown to lead
to substantial achievement gains in comparison with traditional
classroom instruction (Anderson, Corbett, Koedinger, & Pelletier,
1995; Corbett et al., 2001; Koedinger, 2002; Ritter, Anderson,
Koedinger, & Corbett, 2007; Ritter, Kulikowich, Lei, McGuire, &
Morgan, 2007). At the heart of the Fractions Tutor lies a cognitive
model of students’ problem-solving steps. The model captures skill
components in the form of production rules, following the ACT-R
(and other) theories of cognition.

In our research, we make use of a newer version of this intelli-
gent tutor technology, called example-tracing tutors (Aleven,
McLaren, Sewall, & Koedinger, 2009). Example-tracing tutors are
behaviorally similar to Cognitive Tutors, meaning that they provide
step-by-step guidance in the form of feedback and on-demand
hints. In contrast to Cognitive Tutors, example-tracing tutors rely
on generalized examples of correct and incorrect solution paths
rather than on a rule-based cognitive model of student behavior.
We created the Fractions Tutor with the Cognitive Tutor Authoring
Tools (CTAT; Aleven et al., 2009), designing tutor interfaces sepa-
rately for each problem type and representation. The design of the
interfaces and of the interactions students engage in during
problem-solving are based on a number of small-scale user studies
that we conducted in our laboratory, on a prior classroom experi-
ment (Rau et al., 2009), as well as on Cognitive Task Analysis of the
learning domain (Baker, Corbett, & Koedinger, 2007; Clark, Feldon,
Van Merrienboer, Yates, & Early, 2008). Furthermore, an experi-
enced mathematics teacher was involved in developing the tutor
problems. All graphical representations were interactive, virtual
manipulatives (Moyer, Bolyard, & Spikell, 2002). Research has
demonstrated that students can benefit from using virtual manip-
ulatives of fractions (Reimer & Moyer, 2005), and that virtual
manipulatives can be at least as effective in supporting students’
learning as physical manipulatives (Suh, Moyer, & Heo, 2005). The
Fractions Tutor is available to students and teachers on a free
website (https://mathtutor.web.cmu.edu).

The Fractions Tutor used in the study included three different
graphical representations of fractions: circles (see Fig. 1), number
lines (see Fig. 2), and sets (see Fig. 3). Each graphical representation
emphasizes certain aspects of the different interpretations of
fractions (Charalambous & Pitta-Pantazi, 2007). The circle as a part-
whole representation depicts fractions as parts of an area that is
partitioned into equally-sized pieces. The number line represents
a measurement representation. This representation emphasizes
that fractions can be compared in terms of their magnitude and
that they fall between whole numbers. Finally, the set is a ratio
representation and presents fractions in the context of a compar-
ison between two quantities that are depicted as discrete objects.
The task types covered by the Fractions Tutor cover basic concepts
(e.g., identifying fractions from graphical representations and
understanding fractions in terms of sharing activities) and fraction
operations (e.g., equivalent fractions, comparing fractions, and
adding fractions). Table 1 summarizes the task types covered by the
Fractions Tutor.

In each tutor problem, the students first solved the problem by
manipulating the graphical representation and then solved the
problem symbolically. For instance, students could partition the
interactive graphical representations into sections (for the number
line), pieces (for the circle), or objects (for the sets). Fig. 1 shows an
example of an equivalent fractions problem with the circle. Fig. 2
shows a corresponding problem with the number line, and Fig. 3
with the set representation. Problems were introduced with
a realistic cover story. The use of cover stories is commonpractice in
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United States mathematics instruction at the elementary, middle-
school, and high-school levels. Prior research demonstrates that
providing cover stories that emphasize the deep structure of the
problem can promote transfer (e.g., Baranes, Perry, & Stigler, 1989;
Carraher, Carraher, & Schliemann, 1987; Thußbas, 2001). Cover
stories may also facilitate understanding of the problem at hand
and invoke informal strategies (Koedinger & Nathan, 2004). We
chose cover stories that matched the graphical representation and
that emphasized the conceptual properties of each graphical
representation. For instance, the circle diagram was introduced to
students as a cake or a pizza, whereas number line problems used
lengths and distances as examples. The tutor provided support that

is typical of intelligent tutoring systems (VanLehn, 2006). It
provided correctness feedback on all steps, indicating whether the
step is right or wrong. It was able to recognize common student
errors and provide error-specific feedback messages. These
messages were designed to make students reconsider their answer
either by reminding them of a previously-introduced principle or
by providing themwith an explanation for their error. Furthermore,
students could request hints on all problem-solving steps. Hint
messages usually had three levels. First, students received a clari-
fication of the goal (e.g., “You now added all pieces into the same
circle. Before you know what fraction of the whole cake you won,
you need to divide the circle into equally sized pieces.”). They were

Fig. 2. Example of equivalent fractions problem with the number line.

Fig. 1. Example of an equivalent fractions problem with the circle.

M.A. Rau et al. / Learning and Instruction 23 (2013) 98e114102
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then given conceptually oriented help, by reminding them of
a specific concept (e.g., “The pieces are part of the same cake.
Therefore, you keep the same denominator in the sum fraction.”).
Finally, students received explicit instructions regarding the next
step (e.g., “Please divide the circle into four pieces.”).

At the end of each problem, the tutor provided students with
reflection questions in order to prompt them to make sense of their
problem solution. In a prior classroom experiment, we found these
prompts to be effective when students learn with multiple graph-
ical representations of fractions (Rau et al., 2009). Students selected
their answer from a drop-down menu, as shown in Fig. 2. Previous
research has shown that even simple ways of prompting for self-
explanations in an intelligent tutoring system can promote a self-
explanation effect and lead to more robust learning (Aleven &
Koedinger, 2002).

2.2.2. Test instruments
To assess students’ robust knowledge of fractions, we created

a test that included two scales: Representational knowledge and
operational knowledge, described further below. The theoretical
structure of these tests (i.e., the division of the test items into
representational and operational knowledge) was validated by
a confirmatory factor analysis using data from a large sample of
students collected during a pilot study (i.e., a different sample than
participated in the current study). We used a structural equation
model to conduct the confirmatory factor analysis for our tests. The
fit of the model was determined using a variety of fit statistics,
following the recommendations by Arbuckle and Wothke (1999),
and by Kline (1998). We used RMSEA to determine the absolute
model fit, NFI and TLI to determine the incremental fit of themodel,
and CMIN/df to determine our model’s parsimony fit. A model is
considered to have a good fit when the RMSEA is below 0.05, an NFI
and TLI above 0.9, and a CMIN/df below 1.5. The fit statistics for our
model were RMSEA ¼ 0.29, NFI ¼ 0.951, TLI ¼ 0.982, and CMIN/
df ¼ 1.303. The test’s theoretical structure was replicated with the
pretest data from the current experiment.

Each of the two test scales included both familiar and unfamiliar
tasks (i.e., task types that students had encountered during their
work on the tutor and task types that were new relative to those

Fig. 3. Example of equivalent fractions problem with sets.

Table 1
Task types and concepts covered by Fractions Tutor.

Number Task type Example

1 Identify fractions from
graphical representations

What fraction does the
circle show?

2 Identify equivalent fractions
from graphical representations

You are looking for circles
that show 1/4. Select all of
the below circles that apply.

3 Identify embedded fractions
from graphical representations

What fraction of the colored
sections in the circle is blue?

4 Identify equivalent embedded
fractions from graphical
representations

You are looking for circles in
which 1/4 of all colored
sections are blue. Select all
of the below circles that apply.

5 Fractions as proper sharing
of quantities

You want to share 3 pizzas
among 4 people. What fraction
does each of you get?

6 Fractions as quotative sharing You have 3 pizzas that you
share with your friends. Each
of you gets 3/4. How many
people shared the pizza?

7 Making equivalent fractions with
graphical representations

The circle shows 1/4. Can
you show the same fraction
in eighths?

8 Recognizing equivalent fractions
with graphical representations

The circle shows 1/4. Which
of the circles below show an
equivalent fraction?

9 Comparing fractions You have 1/4 of a pizza, and
your friend has 1/3 of a pizza.
Who has more pizza?

10 Determining the magnitude of
differences between fractions

You have 1/4 of a pizza, and
your friend has 1/3 of a pizza.
How much more does he have?

11 Adding fractions with sum
smaller than 1

You have 1/4 of a pizza
pepperoni and 1/3 of a pizza
margarita. How much pizza
do you have altogether?

12 Adding fractions with sum
larger than 1

You have 3/4 of a pizza
pepperoni and 2/3 of a
pizza margarita. How
much pizza do you have
altogether?
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covered in the tutor). Our goal in including the latter types of tasks
was to assess whether students acquired robust knowledge that
can be transferred to unfamiliar problems (see Koedinger et al., in
press). Figs. 4 and 5 show a sample test item for the representa-
tional knowledge and the operational knowledge scales, respec-
tively. The representational knowledge scale of the test assessed
students’ conceptual knowledge of fraction representations. We
operationalized representational knowledge as the ability to
interpret representations in terms of fractions, including graphical
representations that were not covered by the tutor. All items of the
representational knowledge test scale included graphical repre-
sentations, including representations that the students did not
encounter in the set of tutor problems: fraction strips, and
contextualized applications of measurement scales, analogical
clocks, and concrete objects. By contrast, the operational knowl-
edge scale assessed students’ procedural knowledge of fractions
operations. We operationalized operational knowledge as students’
ability to perform familiar operations (i.e., operations they had
practiced in the tutor, such as fraction addition) either without
graphical representations or with an unfamiliar graphical repre-
sentation (i.e., fraction strips). The operational items also included
items that required operations that were not covered by the tutor
(i.e., fraction subtraction) solved without graphical representations.
Finally, the tests included items we adapted from standardized
tests in the United States (NAEP, PSSA) and from examples from the
fractions literature (Rittle-Johnson & Koedinger, 2005).

Two different equivalent versions (version A and version B) of
the test were created. The test versions included the same tasks but
used different numbers. The pilot study of the test instruments
confirmed that both test versions were equally difficult. We
randomly assigned students to either version A or B of the fractions
test at the pretest, assigned them the other version at the imme-
diate posttest, and randomly assigned either version A or B at the
delayed posttest.

Each response on each test item was scored as either correct or
incorrect. When students had to type in a fraction, students
received partial credit for each correct numerator and denominator,
respectively. Non-reduced fractions were graded as correct. The

representational knowledge scale included a total of seven test
items. The operational knowledge scale included a total of five test
items. In order to make the scores more interpretable, we report
relative scores (i.e., scores out of a maximum of 1).

We assessed students’ robust knowledge of fractions using both
effectiveness and efficiency measures. The effectiveness measure
corresponded to the mean score on the representational knowl-
edge scale of the test and the operational knowledge scale of the
test, respectively. To analyze students’ efficiency on the tests, we
used a measure of efficiency described by Van Gog and Paas (2008)
and by Lewis and Barron (2009). Specifically, we combined
students’ standardized average scores on the representational
knowledge and the operational knowledge subscales of the test and
the standardized average time they spent on each of the test
subscales using the following formula:

Efficiency ðsubscale of testÞ

¼ Zðscore on subscale of testÞ � Zðtime spent on subscaleÞ
O2

(1)

We followed Van Gog and Paas (2008) and Lewis and Barron
(2009) and applied the concept of condition efficiency (Paas and
Van Merriënboer, 1993) to a measure of performance efficiency.
Paas and Van Merriënboer (1993) used performance and mental
effort to compute efficiency. Van Gog and Paas (2008) argue that
time on task can also be viewed as an approximation of mental
effort. We used the time students spent on the test rather than the
time they spent with the tutoring system for two reasons. First, we
were interested in students’ efficiency in answering test items,
rather than in howefficiently they learn, because the ability to solve
a test fast and accurately is required in many assessment situations,
for example in standardized tests in the United States. Second,
using time spent on the tutoring system as the measure of mental
effort during the learning phase depends on the assumption that
time-on-task during the learning phase was not restricted. This
assumption does not hold, however, because the students worked

Fig. 4. Sample item of the representational knowledge scale of the fractions test. Students have to use an unfamiliar representation to identify the length of the vehicles as the
crucial aspect of the representation, and relate the two lengths to form a fraction.
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with the tutoring system during their regular mathematics periods,
which are, due to their nature, restricted in time.

2.2.3. Tutor logs
All student interactions with the tutoring systemwere recorded

by the system. The tutor logs capture all student actions and all
tutor responses. Thus, the logs include information on the number
of attempts students need to solve a step correctly, and how many
errors they make per step. As is common in Cognitive Tutor
research, we identified the knowledge components that students
need to solve each problem, based on cognitive task analysis.
Knowledge components are units of cognitive function needed to
solve a set of structurally similar tasks (Koedinger et al., in press).
Table 2 provides examples of knowledge components we identified
and for each, a description of the steps in fractions problems in
which that knowledge component is required. As described further
below, these knowledge components also served as a basis for the
analysis of the tutor log data. Steps in tutor problems were mapped
to knowledge components.

2.3. Research design

The goal of this study was to systematically investigate the
effects of interleaving task types (int-types) versus interleaving
representations (int-reps). We assigned students randomly to one
of two conditions. In the int-types condition, the task types were
interleaved while the graphical representations were blocked. In
the int-reps condition, the graphical representations were inter-
leavedwhile the task types were blocked. Students in all conditions
worked on the same 102 fractions tasks at their own pace, with the
help from the intelligent tutoring system. All learning tasks
involved a single graphical representation. Each problem also
involved the symbolic representation of fractions and a problem
statement in text, but this was kept constant across conditions.
Fig. 6 clarifies how the conditions were implemented. Each table

represents the set of 102 problems that students solved with the
tutor. Each row represents one of twelve task types (e.g., equivalent
fractions, or fraction addition; see Table 1). There were nine prob-
lems for each task type (i.e., each row stands for nine problems).
Each representation was coupled with each task type e there were
three problems for any such combination.1 Thus, the number of
problems of each type, the number of problems with each repre-
sentation, and the number of problems that couple a particular task
type and representation are constant across conditions. In the int-
types condition (see the table on the left in Fig. 6), the task types are
maximally interleaved and the representations are maximally
blocked. That is, students covered all twelve fraction task types
with one graphical representation before switching to the next
representation, again working through all task types before
switching to the third graphical representation (corresponding to
36 problems per representation). In this condition, students
encountered a new task type after every single problem. By
contrast, in the int-reps condition (see the table on the right in
Fig. 6), the representations were maximally interleaved and the
task types were maximally blocked. That is, students worked on all
problems of one task type (covering it with all three representa-
tions) before moving on to the next task types. In this condition,
students encountered a different graphical representation after
every single problem. Thus, the degree of interleaving is the same
across conditions; what varies is what is being interleaved.

In order to prevent possible order effects, we implemented
different plausible orders of graphical representations as a control
factor to counterbalance potential ordering effects. Students never

Fig. 5. Sample item of the operational knowledge scale of the fractions test. Students have to add two fractions as represented with an unfamiliar graphical representation and
select their answer from a list of options.

1 All task types were presented with each graphical representation with the
exception of two fraction addition task types where the use of the set represen-
tation is not advisable from an instructional standpoint. The exclusion of the set
representation from two of twelve task types does not change the level of blocking
or interleaving of task types or representations and therefore does not interfere
with the intervention.
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worked with the set representation first because sets appear to be
the graphical representation with which students are least familiar
(i.e., presenting students with the set representation first cannot be
recommended from an instructional perspective and thus does not
represent a realistic educational scenario). We randomly assigned
students to one of four different orders of graphical representa-
tions: circle e number line e sets, circle e set e number line,
number line e circle e set, or number line e set e circle. Fig. 6 thus
reflects only one of the implemented orders.

2.4. Procedure

The presented study took place at the end of the school year
2008/2009. Students’ regular mathematics teachers led the
sessions, but researchers were present in the classrooms at all
times to assist teachers in answering questions specific to the use of
the tutoring system.

We assessed students’ knowledge of fractions three times. On
the first day, students completed a pretest. They then worked on
the Fractions Tutor, for 5 h, spread across five to six (depending on
specific school schedules) consecutive days. The day following the
tutor sessions, students completed an immediate posttest. Seven
days later, in order to assess whether students’ learning is robust in
that it lasts over time (see Koedinger et al., in press), we gave
students an equivalent delayed posttest. Students could take as
much time as they needed to complete the tests. We asked the
participating teachers not to revisit fractions between the imme-
diate and the delayed posttest.

3. Results

Table 3 provides the means and standard deviations for the
effectiveness of representational and operational knowledge, for
time-on-task on the representational and operational knowledge

Table 2
Examples of knowledge components used in the Fractions Tutor.

Task types Steps within tasks Knowledge component

1. Identify fractions from
graphical representations

Determine the denominator
of given graphical representation

Knowing how a graphical
representation depicts the
denominator

1. Identify fractions from
graphical representations

Determine the numerator of
given graphical representation

Knowing how a graphical
representation depicts the
numerator

2. Identify equivalent fractions
from graphical representations

Multiple choice to identify the
graphical representation
showing the given fraction

Being able to match equivalent
graphical representations

5. Fractions as proper sharing
of quantities

Determine the denominator
of fractional amount per
person when sharing a quantity

Knowing how to identify the
denominator of the fractional
part of a shared quantity

5. Fractions as proper sharing
of quantities

Determine the numerator of
fractional amount per person
when sharing a quantity

Knowing how to identify the
numerator of the fractional part
of a shared quantity

6. Fractions as quotative sharing Typing in the number of people
sharing an amount given the
fractional amount per person

Knowing how to identify the number
of people sharing a quantity given
the fractional amount per person

6. Fractions as quotative sharing Typing in the number of wholes
shared given the fractional
amount per person

Knowing how to identify the
number of wholes shared given
the fractional amount per person

7. Making equivalent fractions
with graphical representations

Multiplication factor of denominator Knowing how to expand a fraction
by multiplying numerator and
denominator by the same number

7. Making equivalent fractions
with graphical representations

Multiplication factor of
numerator

Knowing how to expand a fraction
by multiplying numerator and
denominator by the same number

9. Comparing fractions Determine the common denominator
of two fractions in order to compare them

Knowing how to find the common
denominator of two given fractions in
order to compare them

9. Comparing fractions Determine the numerator of a given
fraction by expanding it in order to
compare it to another

Knowing how to expand the numerator
of a fraction in order to compare
it to another

9. Comparing fractions Multiple choice to identify the
graphical representation showing
the given fraction

Being able to match a graphical
representation to a given fraction

9. Comparing fractions Select the relationship (larger, smaller,
equal) between two given fractions

Being able to judge the relative relationship
between two fractions that have a
common denominator

11. Adding fractions Determine the denominator of sum fraction Knowing how to find the denominator of
the result from adding two fractions
that have a common denominator

11 þ 12. Adding fractions Determine the numerator of sum fraction Knowing how to add the numerators of
two fractions that have a common
denominator

11 þ 12. Adding fractions Partitioning the graphical representation
into a total number of sections
corresponding to the least common
denominator

Knowing into how many sections to
partition a representation to match a
given symbolic fraction
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subscales of the test, and for representational efficiency and oper-
ational efficiency.

Students were excluded if they were not present on all test days
(n¼ 49), if theyworked on the tutoring system during theweekend
(n ¼ 1), if they had an overall pretest score of 0.95 or higher (n¼ 2),
or if we did not have information on howmuch time they spent on
each item of the test (n ¼ 5). After excluding these students, a total
of N ¼ 101 remained in the sample (n ¼ 52 for int-types and n ¼ 49
for int-reps). The number of excluded students did not differ
between experimental conditions, c2 (1, N ¼ 158) < 1, nor did the
time spent on the tutor problems (F< 1). A MANOVA on the pretest
scores showed that students who were excluded from the analysis
scored significantly higher on the representational knowledge scale
of the test, F(1, 156) ¼ 13.192, p < .01, and on the operational
knowledge scale of the test, F(1, 156)¼ 6.456, p< .05, than students
who were included in the analysis. No significant differences
between conditions were found at the pretest for representational
knowledge (F < 1), or operational knowledge (F < 1). Since there
was no effect for order of representation on representational
knowledge (F< 1) or operational knowledge F(3, 97)¼ 1.21, p> .10,

we disregarded the order of representation in the reported anal-
yses. Since students had seen the same test that they received at the
delayed posttest either at the pretest or at the immediate posttest,
we analyzed the effect of having seen the same test form either at
the pretest or at the immediate posttest. There was no significant
difference between students for the time (i.e., either at the pretest or
at the immediate posttest) students had seen the same test before
on representational knowledge (F < 1) or operational knowledge
(F< 1). Finally, because some students did not finish all problems on
the tutor in the time given, we computed a covariate that describes,
for each student, the number of tutor problems solved that involved
the knowledge components tested by the representational and by
the operational knowledge tests, respectively.

A hierarchical linear model (see Raudenbush & Bryk, 2002) with
fournested levelswasused to analyze thedata. At level 1,wemodeled
performance for each of the two posttests for each student. At level 2,
we accounted for differences between students. At level 3, we
modeleddifferences between classes, and at level 4,we accounted for
differences between schools. In addition, we used post-hoc compar-
isons to clarify the effect of blocking versus interleaving. More
specifically, the following hierarchical linear model was fitted to the
data: scoreij ¼ conditioni þ test-timej þ conditioni*test-timeij þ pre-
scorei þ tutor-exposurei þ schooli þ classi(school)

scoreij ¼ conditioni þ test� timej þ conditioni*test� timeij
þ pre� scorei þ tutor� exposurei þ schooli
þ classiðschoolÞ

(2)

Scoreij is a student’s score on the representational knowledge or
the operational knowledge subscale of the fractions test (either
effectiveness or efficiency score); conditioni indicates whether the
student was in the int-types or the int-reps condition; test-timej is
an indicator variable for either the immediate or the delayed
posttest; conditioni*test-timeij captures an interaction between
condition and test-time; pre-scorei is a students’ score on repre-
sentational knowledge or operational knowledge at the pretest
(either effectiveness or efficiency score); tutor-exposurei indicates

Fig. 6. Rows depict twelve different topics covered, columns shows one of several possible orders of representations: C/white ¼ circle, N/light-gray¼ numberline, S/dark-gray¼ set.
The dashed cells indicate task-type/representation combinations that were not implemented in the tutor.

Table 3
Means and standard deviations (in parentheses) for effectiveness, time-on-task (in
seconds), and efficiency for the representational and operational knowledge
subscales at pretest, immediate posttest, delayed posttest by condition.

Pretest Immediate
posttest

Delayed
posttest

Representational
effectiveness

int-types 0.55 (0.20) 0.61 (0.27) 0.59 (0.24)
int-reps 0.53 (0.22) 0.52 (0.26) 0.39 (0.32)

Operational
effectiveness

int-types 0.38 (0.31) 0.51 (0.34) 0.44 (0.36)
int-reps 0.43 (0.33) 0.40 (0.35) 0.39 (0.30)

Representational
time-on-task

int-types 100.18 (29.53) 70.89 (22.46) 66.95 (23.60)
int-reps 103.63 (32.19) 74.88 (28.33) 79.24 (30.52)

Operational
time-on-task

int-types 68.74 (31.64) 47.69 (18.53) 43.88 (19.09)
int-reps 69.77 (37.01) 46.11 (21.31) 42.71 (22.22)

Representational
efficiency

int-types �0.35 (0.89) 0.48 (0.83) 0.52 (0.80)
int-reps �0.48 (0.98) 0.16 (0.90) �0.31 (1.01)

Operational
efficiency

int-types �0.50 (0.90) 0.31 (0.83) 0.24 (0.77)
int-reps �0.42 (1.12) 0.12 (0.78) 0.17 (0.63)
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how many problems a student solved on the relevant knowledge
components being tested by either the representational knowledge
test or the operational knowledge test (see Table 2 for examples of
the knowledge components covered by the tutoring system);
schooli is a random intercept for the students’ school; and class-
i(school) is a nested random-intercept for the student’s class.

The reported p-values were adjusted using the Bonferroni
correction. We report partial h2 for effect sizes on effects including
more than two conditions, and Cohen’s d for effect sizes of pairwise
comparisons. According to Cohen (1988), an effect size partial h2 of
.01 corresponds to a small effect, .06 to a medium effect, and .14 to
a large effect. An effect size d of .20 corresponds to a small effect, .50
to a medium effect, and .80 to a large effect.

3.1. Differences between conditions

To investigate hypothesis 1a, that the int-types condition will
outperform the int-reps condition on effectiveness of representa-
tional knowledge, we applied the HLM in Equation (2) to students’
effectiveness scores on the representational knowledge subscale of
the test. Table 4 provides an overview of the learning results on
both the representational effectiveness and representational effi-
ciency measures. Table 5 summarizes the least squared means and
standard deviations generated by the model for representational
effectiveness and representational efficiency. We found a signifi-
cantmain effect for condition on representational effectiveness, F(1,
100) ¼ 18.28, p < .01, partial h2 ¼ .07. There was also a significant
main effect of test-time (i.e., immediate posttest and delayed
posttest), F(1, 100) ¼ 7.46, p < .05, partial h2 ¼ .02. The main effects
were qualified by a significant interaction between test-time (i.e.,
immediate or delayed posttest) and condition, F(1, 100) ¼ 4.94,
p < .01, partial h2 < .03. Post-hoc comparisons between groups
were computed to clarify the interaction effect at the immediate
posttest and the delayed posttest, respectively. On representational
effectiveness, we found an advantage for int-types over int-reps on
the immediate posttest, t(100) ¼ 2.03, p < .05, d ¼ .09, and the
delayed posttest, t(100) ¼ 4.74, p < .01, d ¼ .21. Taken together,
these results support hypothesis 1a: the int-types condition
outperforms the int-reps condition on effectiveness of represen-
tational knowledge.

To investigate hypothesis 1b, that the int-types condition will
outperform the int-reps condition on effectiveness of representa-
tional knowledge, we applied the HLM in Equation (2) to students’
efficiency scores on the representational knowledge subscale of the
test. We found a significant main effect for condition on repre-
sentational efficiency, F(1, 100) ¼ 23.97, p < .01, partial h2 ¼ .11.
There was also a significant main effect of test-time, F(1,
100)¼ 4.99, p< .05, partial h2¼ .01. Themain effects were qualified
by a significant interaction between test-time (i.e., immediate or
delayed posttest) and condition, F(1, 100) ¼ 7.32, p < .01, partial
h2 ¼ .05. Post-hoc comparisons between groups were computed to
clarify the interaction effect at the immediate posttest and the
delayed posttest, respectively. On representational efficiency, we
found an advantage for int-types over int-reps on the immediate
posttest, t(100) ¼ 2.34, p < .05, d ¼ .37, and the delayed posttest,
t(100)¼ 5.55, p< .01, d ¼ .88. Our findings thus support hypothesis
1b: int-types condition outperforms the int-reps condition on
effectiveness of representational knowledge.

To investigate hypothesis 2a, that the int-types condition will
outperform the int-reps condition on effectiveness of operational
knowledge, we applied the HLM in Equation (2) to students’
effectiveness scores on the operational knowledge subscale of the
test. Table 6 provides an overview of the learning results on both
the operational effectiveness and operational efficiency measures.
Table 7 summarizes the least squared means and standard devia-
tions generated by the model for operational effectiveness and
operational efficiency. On operational effectiveness, we found no
significant main effect of condition, F(1,100) ¼ 2.05, p > .10. The
effect of test-time was marginally significant for operational
effectiveness, F(1,100) ¼ 3.04, p < .10, partial h2 < .01. We found no
significant interaction effect for operational effectiveness,
F(1,100) ¼ 1.36, p > .10. These results do not support hypothesis 2a:
the int-types condition does not outperform the int-reps condition
on effectiveness of operational knowledge.

To investigate hypothesis 2b, that the int-types condition will
outperform the int-reps condition on efficiency of operational
knowledge, we applied the HLM in Equation (2) to students’
efficiency scores on the operational knowledge subscale of the
test. On operational efficiency, we found no significant main
effect of condition, F < 1. The effect of test-time was not signifi-
cant for operational efficiency, F < 1. We found no significant
interaction effect for operational efficiency, F < 1. Taken together,
we cannot support hypothesis 2b: the int-types condition does
not outperform the int-reps condition on efficiency of operational
knowledge.

3.2. Analysis of tutor logs

To explore the effects of the int-types and the int-reps condi-
tions on students’ learning, we analyzed the tutor log data.

Table 4
Overview of study results on differences between conditions on representational effectiveness and representational efficiency.

measure Test-time Main effects/
interaction effects

Tendency of
pairwise comparisons

Significant
(yes/no)

F/t-value Adj. p-value Effect size

Representational
effectiveness

Condition Yes F(1, 100) ¼ 23.97 p < .01 Partial h2 ¼ .11
Test-time Yes F(1, 100) ¼ 4.99 p < .05 Partial h2 ¼ .01
Condition*test-time Yes F(1, 100) ¼ 7.32 p < .01 Partial h2 ¼ .05

Immediate posttest int-types > int-reps Yes t(100) ¼ 2.34 p < .05 d ¼ .37
Delayed posttest int-types > int-reps Yes t(100) ¼ 5.55 p < .01 d ¼ .88

Representational
efficiency

Condition Yes F(1, 100) ¼ 18.28 p < .01 Partial h2 ¼ . 07
Test-time Yes F(1, 100) ¼ 4.94 p < .05 Partial h2 ¼ .02
Condition*test-time Yes F(1, 100) ¼ 7.46 p < .01 Partial h2 ¼ .03

Immediate posttest int-types > int-reps Yes t(100) ¼ 2.03 p < .05 d ¼ .09
Delayed posttest int-types > int-reps Yes t(100) ¼ 4.74 p < .01 d ¼ .21

Table 5
Least squared means and standard deviations (in parentheses) for representational
effectiveness and representational efficiency at immediate posttest, delayed posttest
by condition.

Immediate posttest Delayed posttest

Representational effectiveness int-types 0.58 (0.05) 0.57 (0.05)
int-reps 0.50 (0.05) 0.36 (0.05)

Representational efficiency int-types 0.41 (0.22) 0.45 (0.22)
int-reps 0.03 (0.22) �0.43 (0.22)
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Specifically, we examined “learning curves” using the DataShop
web service (Anderson, 1993; Koedinger et al., 2010; VanLehn et al.,
2007), which depict the average error rate (across students and
knowledge components) as a function of the amount of prior
practice (i.e., the number of opportunities a student has had to
apply a given knowledge component). Following standard practice
in Cognitive Tutors research, we viewed each step in a tutor
problem as a learning opportunity for the particular knowledge
component involved in the step. As mentioned, as part of our
cognitive task analysis during tutor development, we had identified
fine-grained knowledge components (see Table 2 for examples)
such that each step in a tutor problem could be mapped to one of
these components. Further, we considered a step in a tutor problem
to be correct if the student solved it without hints and errors (i.e., if
the student’s first action on the step was a correct attempt at
solving e as opposed to an error or a hint request). We expect that,
if learning occurs, error rates will decrease with the number of
learning opportunities students have encountered. Fig. 7 shows the
aggregate learning curves based on error rates across knowledge
components for the int-types condition and the int-reps condition.
The slope of the learning curves decreases equally for both condi-
tions. Therefore, the log data provide evidence for gradual learning
in both conditions, but they do not provide evidence that the int-
types and the int-reps conditions had different effects on
students’ learning rates.

4. Discussion and conclusions

The goal of our classroom experiment was to investigate
whether interleaving task types will lead to more robust repre-
sentational and operational knowledge of fractions than inter-
leaving graphical representations. Taken together, our results
provide an affirmative answer with regard to representational
knowledge, but not with respect to operational knowledge. As
hypothesized, our results show that interleaving task types while
blocking graphical representations leads to both higher effective-
ness and higher efficiency in answering questions that require
representational knowledge, compared to interleaving graphical
representations while blocking task types (hypothesis 1a and

hypothesis 1b, respectively). Overall, our results provide support
for the notion that interleaving task types leads to more robust
representational knowledge, as compared to interleaving repre-
sentations. On the other hand, the practice schedule of task types
and graphical representations did not significantly affect students’
effectiveness or efficiency in answering questions that require
operational knowledge (hypothesis 2a and hypothesis 2b,
respectively).

How might we explain the differences between conditions on
representational knowledge (hypotheses 1a and 1b)? We have
argued that interleaving learning tasks along the dimension of
greatest variability is most effective, and we have argued that the
differences among task types are more salient than the differences
among representations. Although the different representations
used in our study emphasize conceptually different aspects of
representations, students might not perceive these dissimilarities
because the representations are designed to be intuitive and easy to
interpret. For this reason, it may be difficult for the relative novice
students in our study to discern the conceptual differences
between the different representations. Greater problem variability
is likely to increase the need for repeated reactivation of knowl-
edge, which leads to strengthening of that knowledge and increases
the likelihood of long-term retention of that knowledge. Greater
variability may also, to a degree, increase the number of opportu-
nities for abstraction. If tasks are very similar, it may be difficult for
students to abstract: there must be a sufficient number of dissim-
ilarities to abstract over; otherwise, there is no “grist” for the
“abstraction mill”. It is possible that the subtle differences between
representations make it difficult for students to abstract across
them, at least without explicit support from the learning environ-
ment. In fact, research in other domains has demonstrated that
relating representations is a difficult task (e.g., Bodemer et al.,
2004; De Jong et al., 1998; Van der Meij & de Jong, 2006). Instead,
interleaving task types may encourage students to abstract across
different applications of the same graphical representations, which
appears to lead to a more robust understanding of graphical
representations than abstracting across different representations.
Applying the same representation to different subsequent task
types may allow students to form an abstract understanding of the
given representation independent of its application to a specific
task type. Consequently, interleaving task types may have a larger
impact on acquiring robust representational knowledge than
interleaving representations. Taken together, our results suggest
that the reactivation and abstraction across task types is more
beneficial to students’ conceptual understanding of representations
than abstracting across representations.

Whether the notion that, in domains in which learning tasks
vary across multiple dimensions (e.g., representations and task
types), one should interleave learning tasks along the dimension
with the greatest variability (i.e., in the present experiment task

Table 6
Overview of study results on differences between conditions, obtained from HLM described in Equation (2).

test scale Test-time Main effects/
interaction effects

Tendency of
pairwise comparisons

Significant
(yes/no)

F/t-value Adj. p-value Effect size

Operational effectiveness Condition No F(1,100) ¼ 2.05 p > .10
Test-time Yes F(1,100) ¼ 3.04 p < .10 Partial h2 < .01
Condition*test-time No F(1,100) ¼ 1.36 p > .10

Immediate posttest int-types > int-reps No t < 1
Delayed posttest int-types > int-reps No t < 1

Operational efficiency Condition No F < 1
Test-time No F < 1
Condition*test-time No F < 1

Immediate posttest int-types > int-reps No t < 1
Delayed posttest int-types > int-reps No t < 1

Table 7
Least squared means and standard deviations (in parentheses) for operational
effectiveness and operational efficiency at immediate posttest, delayed posttest by
condition.

Immediate posttest Delayed posttest

Operational effectiveness int-types 0.51 (0.04) 0.43 (0.04)
int-reps 0.41 (0.04) 0.39 (0.04)

Operational efficiency int-types 0.25 (0.11) 0.18 (0.11)
int-reps 0.17 (0.10) 0.23 (0.10)
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types and not representations) holds as a general principle should
be addressed in future research. Such research should investigate
the effects of interleaving different dimensions of complex learning
tasks, where the dimensions differ with regard to their variability.
There are few studies that have demonstrated benefits for inter-
leaving learning tasks in complex domains (De Croock et al., 1998;
Helsdingen et al., 2011; van Merrienboer et al., 2002; Rohrer &
Taylor, 2007; Taylor & Rohrer, 2010), but none of them have
investigated whether the variability of the dimension on which
learning tasks are interleavedmatter. As argued, interleaving highly
dissimilar learning tasks may decrease the likelihood that
abstraction can occur. However, in situations where consecutive
learning tasks are so dissimilar that they do not require sufficiently
similar knowledge to abstract across, we would not predict an
advantage of interleaved practice through abstraction. In other
words, if abstraction is the prominent mechanism, we would
expect that a moderate level of dimension variability will lead to
the best learning results. On the other hand, if reactivation is the
more prominent mechanism of interleaved practice, one may
expect that even interleaving maximally dissimilar learning tasks
will enhance students’ robust learning. Therefore, whether one
should always interleave the dimension will likely depend on the
mechanisms underlying the effect of interleaved practice, and on
the nature of the dimension that is being interleaved. More
research is needed to investigate boundary cases of interleaved
practice to establish whether increasing the variability of the
dimension on which learning tasks are being interleaved ceases to
be beneficial after reaching a certain degree of dissimilarity. Our
study presents a first attempt at answering this important theo-
retical and practical question, and we think that it has the potential
to stimulate fruitful future research.

The fact that interleaving task types versus interleaving graph-
ical representations affects only representational knowledge
(hypotheses 1a and 1b) but not, as we had predicted, operational
knowledge (hypotheses 2a and 2b) may reflect differences in these
knowledge types. The representational knowledge scale requires
primarily conceptual knowledge about how to interpret

representations, including new representations of the same
underlying domain concepts. The operational knowledge scale
assesses students’ ability to apply procedures to solve fractions
problems, and to transfer these procedures by adapting them to
novel problems (including ones without representations). Our
results appear to indicate that practice schedules have a greater
impact on conceptual understanding than on procedural knowl-
edge. Some other studies have failed to find effects of practice
schedules altogether (e.g., French, Rink, & Werner, 1990; Jones &
French, 2007). They argued that the effect of practice schedules
depends on the complexity of the learning tasks because the
complexity of the task impacts the processing demands (Shea &
Morgan, 1979; Wulf & Shea, 2002). Although these studies have
been conducted in a radically different domain, their argumentmay
apply to our study as well and may help to explain the lack of
differences between our conditions on operational efficiency. For
instance, Wulf and Shea (2002) suggest that the higher the
complexity of the learning tasks (which increases processing
demands compared to low-complexity tasks), the less students will
benefit from interleaved practice (which corresponds to a further
increase of the processing demands). In the current study, it may be
that the operational knowledge covered by the tutor was more
complex than the representational knowledge. Fractions opera-
tions, when carried out with graphical representations, may rely on
an at least basic understanding of how the graphical representa-
tions depict fractions. In other words, the operational knowledge
may have required some representational knowledge, whereas the
representational knowledge covered by the Fractions Tutor may
not have required operational knowledge. It is therefore possible
that the operational knowledge acquisition as supported by the
Fractions Tutor was, due to its higher complexity, accompanied by
relatively high processing demands. Interleaving task types may
have further increased the processing demands, so that students’
benefit from interleaving task types decreased.

Our findings also raise some additional open questions
regarding the effect of interleaved practice on students’ perfor-
mance during practice. A common finding in the contextual

Fig. 7. Overall learning curve for the int-types condition (black) and the int-reps condition (gray). The solid lines indicate the empirical error-rate values per learning opportunity as
obtained from the tutor log data. The dashed lines indicates the fitted learning curve computed from an Additive Factor Model that uses an Item-Response Model to predict how
a student will perform on each knowledge component on each learning opportunity.
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interference literature is that interleaved practice schedules facili-
tate long-term retention and performance on transfer tests, but
lead to lower performance during the acquisition phase than
blocked practice schedules (e.g., De Croock et al., 1998; Helsdingen
et al., 2011; Lee & Simon, 2004; Shea & Morgan, 1979; Wulf & Shea,
2002). In our study, however, we found no difference across
conditions in the performance during practice, as indicated by our
analysis of the tutor log data, described above (see Fig. 7). Our study
differs from prior work in that we did not compare a blocked
condition versus an interleaved condition. Rather, we contrasted
two different interleaved practice schedules that interleaved
different aspects of the learning task. Both kinds of interleaved
schedules may have created some level of interference during the
acquisition phase, such that wewould not necessarily expect to see
a difference between the conditions with respect to students’
performance during their work on the tutoring system. We note
that research on practice schedules in other domains has not
always found that interleaved practice leads to reduced perfor-
mance during the acquisition phase (Hebert et al., 1996; Helsdingen
et al., 2011; Immink & Wright, 1998; Lee & Magill, 1985; Nelson,
2006; Ollis, Button, & Fairweather, 2005; Wrisberg & Liu, 1991). A
common explanation for the lack of differences during the acqui-
sition phase is that the amount of interference created in the
interleaved conditions was not sufficient (e.g., Hebert et al., 1996;
Nelson, 2006). Their reasoning is similar to our argumente that the
interference created by our two interleaved conditions was not
sufficiently different to show an effect during students’ practice
with the tutoring system.

Immink and Wright (1998), and Helsdingen et al. (2011) offer
a different explanation for their lack of differences on students’
performance during the practice phase. Based on Immink and
Wright’s (1998) finding that the advantage of performance during
training in a blocked practice condition relative to an interleaved
practice condition disappeared when learners were given more
time, they propose that performance differences during the
acquisition phase are not apparent in self-paced learning settings
(Helsdingen et al., 2011), because learners can plan their next steps
before executing them (Immink & Wright, 1998). Sufficient time to
solve a learning taskmight increase students’ cognitive resources to
encounter the increase in processing demands due to interleaved
practice. Having time to plan the next steps may therefore buffer
the negative effect of interleaved practice on students’ performance
during the acquisition phase. Future research should address the
question under which circumstances we can expect effects of
interleaved practice during the acquisition phase, and how the
presence or absence of differences during practice relates to
differences between practice schedules on posttest performance.

It is interesting to reflect on whether the results of the current
study generalize beyond some of the specific properties of the
learning environment we employed, an intelligent tutoring system
for fractions with interactive graphical representations. Are our
findings specific to the task types and graphical representations
used in instructional materials for fractions learning? We expect
not. Many domains employ graphical representations across
multiple task types. In most of these domains, graphical repre-
sentations are designed so that learners can interpret them easily,
by making use of intuitive perceptual processes and by building on
students’ tacit prior knowledge of the real world (for example,
linear graphs in coordinate systems build on of students’ intuitive
understanding of growth). In many of these domains, the concep-
tual differences between graphical representations are also less
explicitly stated than the differences between task types, because
task types might require the use of different procedures, whereas
representations rely on perceptual properties. Consequently, we
expect that interleaving of task types will lead to more robust

learning than interleaving representations also in other domains
than fractions. Since learning with multiple graphical representa-
tions has broad application in a variety of domains, including
mathematics, biology, statistics, economy, and many more, the
potential range of applications of our findings is large.

We also expect our results to generalize to other formats than
intelligent tutoring systems, such as paper-based curricula. A
crucial difference between computer-based learning environments
and paper-based learning materials is that the latter tend not to
involve virtual manipulatives such as the interactive graphical
representations used in this classroom experiment. We do not
expect the results to change in favor of interleaving representations
when static representations are used. Virtual manipulatives are
more engaging than static representations (e.g., Moyer et al., 2002;
Rogers, 1999), and therefore might motivate students more than
static representations to deeply process the conceptual properties
of the graphical representations. Therefore, we would expect the
difference between static representations to be even less salient
than between the virtual manipulatives used in the present study.
In any case, task types should remain the more variable dimension,
compared to representations.

Students’ motivation may also play a role in the effect of inter-
leaving task types. It is possible that interleaving task types might
be perceived as less repetitive than interleaving representations,
because task types are more saliently different than representa-
tions. The advantage of interleaving task types over interleaving
representations might be mediated by these potential effects on
students’ motivation. Higher motivation may have lead students to
process the material covered by the Fractions Tutor more deeply,
which may have accounted for the higher learning gains in the int-
types condition. Future research could address this question by
assessing students’ motivation during the acquisition phase and
analyze whether the effects of interleaving task types versus
representations is in part or fully mediated through students’
motivation.

When designing complex and realistic learning materials that
usemultiple representations, there aremany other possibleways to
sequence representations and task types. Our classroom experi-
ment contrasted interleaving task types while blocking represen-
tations, and interleaving representations while blocking task types.
These two conditions represent two extremes, where other options
are possible. For example, one could interleave along neither
dimension (i.e., have “blocks” of practice problems that all involve
the same task type and representation), or one could interleave
along both dimensions. Neither of these approaches seems like
a good idea: not interleaving means one misses out on the learning
benefits of interleaving, whereas extreme interleaving along two
dimensions may lead to cognitive overload. It is possible, however,
to highly interleave one aspect while also moderately interleaving
the other aspect. Whether interleaving multiple representations is
helpful in addition to interleaving task types remains an open
question that future research should address.

A further open question regards the mechanisms underlying the
differences we found between conditions. As argued before, the
mechanisms of reactivation and abstraction may not be mutually
exclusive: both mechanisms may be active at the same time. While
we cannot definitively conclude from our data which learning
mechanism accounts for the advantage of interleaving task types,
we speculate that reactivation may be the more frequent mecha-
nism. Reactivation is a process that occurs automatically when
students have to consecutively use knowledge to solve a task that is
currently not active in working memory and needs to be “loaded”
again intoworkingmemory. Abstraction, on the other hand, ismore
likely to require conscious and effortful comparison across task
types. Successfully comparing across task types would require
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learners to see what task properties are key to solving each
problem, and which are incidental. This is a complicated process
that would induce a substantial amount cognitive load, on top of
the cognitive load due to successfully solving the problem at hand.
We think that it is unlikely that students spontaneously engage in
such a demanding comparison across different task types.
However, further research is needed to identify the mechanisms
underlying the advantage of interleaved practice in complex
educational settings.

In conclusion, the results from our classroom experiment are
both of practical and of theoretical significance. Our results also
provide guidance for developers of learning materials that include
multiple graphical representations which are used across multiple
task types. We recommend that they interleave task types and
block representations in order to promote conceptual under-
standing of the representations. Furthermore, from a theoretical
perspective, we provide evidence that the dimension on which
learning tasks are interleaved matters; interleaving task types
influences the acquisition of robust conceptual knowledge more
than interleaving of graphical representations does. We extend the
literature on learning with multiple representations by demon-
strating that the temporal sequence of multiple representations has
an effect on students’ robust conceptual understanding of repre-
sentations. As a general principle, to be confirmed by future
research, it appears that interleaving along the dimension with
greatest variability is most effective.
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