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Prior research shows that multiple representations can enhance learning, provided that students make
connections among them. We hypothesized that support for connection making is most effective in
enhancing learning of domain knowledge if it helps students both in making sense of these connections
and in becoming perceptually fluent in making connections. We tested this hypothesis in an experiment
with 428 4th- and 5th-grade students who worked with different versions of an intelligent tutoring system
for fractions learning. Results did not show main effects for sense-making or fluency-building support but
an interaction effect, such that a combination of sense-making and fluency-building support is most
effective in enhancing fractions knowledge. Causal path analysis of log data from the system shows that
sense-making support enhances students’ benefit from fluency-building support, but fluency-building
support does not enhance their benefit from sense-making support. Our results suggest that both
understanding of connections and perceptual fluency in connection making are critical aspects of learning
of domain knowledge with multiple graphical representations. Findings from the causal path analysis lead
to the testable prediction that instruction should provide sense-making support and fluency-building
support for connection making.
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Instructional materials typically use a variety of representations.
For instance, students learning about fractions usually encounter
the representations shown in Figure 1: circles, rectangles, and
number lines. There is considerable evidence for benefits of mul-
tiple representations on students’ learning (Ainsworth, 2006; de
Jong et al., 1998; Eilam & Poyas, 2008). Multiple representations
can enhance learning because they emphasize complementary con-
ceptual aspects of the content (Larkin & Simon, 1987; Schnotz,

2005; Schnotz & Bannert, 2003). For example, the circle in Figure
1 depicts fractions as part of a whole circle, whereas the number
line depicts fractions as a measure of length.

However, students’ benefit from multiple representations de-
pends on their ability to make connections among them (Ain-
sworth, 2006; Cook, Wiebe, & Carter, 2008; Taber, 2001). For
example, learning of fractions requires an integration of the dif-
ferent concepts afforded by the representations in Figure 1 (Na-
tional Mathematics Advisory Panel, 2008; Siegler et al., 2010).
Therefore, students need to make connections among these repre-
sentations. However, connection making is a difficult task (de Jong
et al., 1998; Van Someren, Boshuizen, & de Jong, 1998) that
students often fail to attempt spontaneously (Ainsworth, Bibby, &
Wood, 2002; Rau, Aleven, Rummel, & Pardos, 2014). At least two
types of connection-making competencies play a role in students’
learning. First, they need understanding of connections: the ability
to map corresponding visual features of the graphical representa-
tions (GRs) to one another (e.g., Ainsworth, 2006; Schnotz &
Bannert, 2003; Seufert, 2003). For example, when working with
the GRs in Figure 1, students may map the colored section in the
circle to the number of sections between 0 and the dot in the
number line, based on the rationale that both show the numerator
of the fraction. Second, connection making involves the acquisi-
tion of perceptual fluency: learning to recognize visual patterns in
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GRs that correspond to domain-relevant concepts. For example,
the student may learn to recognize that the GRs in Figure 1 show
the same proportion of some unit.

Although prior research has yielded a number of effective
interventions to support both types of connection-making compe-
tencies, this research has so far not investigated possible interac-
tions among them. Our work addresses this gap by investigating
whether combining support tailored to each type of connection-
making competency enhances students’ learning of fractions
knowledge. We chose fractions as a domain for our research
because—similar to many other STEM domains—instructional
materials typically use multiple graphical representations (MGRs)
that emphasize different concepts. Therefore, our research has the
potential to generalize to other STEM domains. We conducted our
research as part of regular classroom instruction in the context
intelligent tutoring systems (Koedinger & Corbett, 2006), which
are used in many classrooms across the United States and hence
represent a realistic educational scenario. A further advantage of
intelligent tutoring systems is that they allow for the use of
interactive, virtual GRs while providing tutoring, which aligns
with mathematics education research demonstrating advantages of
virtual over physical GRs for fractions instruction (Moyer,
Bolyard, & Spikell, 2002; Reimer & Moyer, 2005). For our ex-
periment, we used the Fractions Tutor (Rau, Aleven, Rummel, &
Rohrbach, 2013), which provides multiple virtual GRs and has
been shown to yield significant learning about fractions knowledge
among elementary-school students.

Motivation

Multiple Graphical Representations of Fractions

The mathematics education literature suggests that GRs funda-
mentally shape how students conceptualize fractions (Charalam-
bous & Pitta-Pantazi, 2007; Cramer, Wyberg, & Leavitt, 2008).
Fractions are a notoriously complex topic (Charalambous & Pitta-
Pantazi, 2007). Indeed, Behr, Lesh, Post, and Silver (1993) suggest
at least six conceptual ways to interpret fractions: (a) parts of a
whole, (b) decimals, (c) ratios, (d) quotient, (e) operators, and (f)
measurements. GRs differ in their capacity to help students under-
stand these concepts. For instance, area models (i.e., circles and
rectangles) can illustrate part-whole concepts (e.g., one of four
sections is shaded), ratio concepts (one section is shaded, three are
unshaded), and quotient concepts (one whole divided by four;
Cramer et al., 2008). While circles are a type of area model in
which the whole is inherent in the shape (i.e., a full circle; Cramer
et al., 2008), rectangles do not have a standard shape but can be
divided horizontally and vertically, which is helpful for illustrating
quotient and operator interpretations. By contrast, linear models

(e.g., number lines) are well suited to illustrate measurement and
decimal concepts (Siegler et al., 2010).

Fractions instruction typically uses multiple-graphical-
representations (MGRs; Charalambous & Pitta-Pantazi, 2007; Ki-
eren, 1993; Lamon, 1999; Martinie & Bay-Williams, 2003; Moss
& Case, 1999; Thompson & Saldanha, 2003). Common curricula
tend to start fractions instruction with area models (e.g., circles and
rectangles) to introduce part-whole concepts of fractions and then
work toward including other concepts, for instance by using num-
ber lines to illustrate measurement concepts (Behr et al., 1993;
Kieren, 1993; Ohlsson, 1988). Failure to make connections among
these different GRs may lead students to overly rely on one
conceptual interpretation (Behr et al., 1993; Kieren, 1993;
Ohlsson, 1988). This can cause misconceptions such as the “whole
number bias”: the bias to treat fractions as composites of whole
numbers (i.e., numerator and denominator), rather than as overall
fraction values (Ni & Zhou, 2005). Indeed, Siegler and colleagues
criticize early reliance on area models in fractions instruction for
overemphasizing part-whole concepts (Siegler et al., 2011, 2013).
Instead, they recommend increased use of number line represen-
tations to emphasize measurement concepts. In line with this
recommendation, educational practice guides emphasize advan-
tages of number lines over other GRs (National Mathematics
Advisory Panel, 2008; Siegler et al., 2010).

Given recent research on the potential privilege of number line
representations over area models (Siegler et al., 2011, 2013), one
may even argue that unless students make connections among
GRs, they may learn better with number lines alone. Indeed, in our
own prior research, we found that students benefited from MGRs
only if they received instructional support to relate each GR to key
fractions concepts (Rau, Aleven, & Rummel, 2015). Without this
support, students who worked with number lines alone showed
higher learning gains than students who worked with MGRs.

In summary, students’ benefit from MGRs depends on their
ability to make connections among them. However, it remains an
open question how best to support students in making such con-
nections. We investigate this question in our current experiment.
Because Siegler’s suggestion that number lines alone may be more
effective than MGRs is mainly rooted in concerns about failure to
connect measurement concepts to part-whole concepts, our exper-
iment focuses on connection making between the GRs typically
used to emphasize these concepts: number lines and area repre-
sentations (circle and rectangle).

Theoretical Framework

To address the question of how best to support students in
making connections among MGRs, we draw on a recent theoretical
framework that seeks to bridge cognitive science and educational

Figure 1. Graphical representations of fractions: circle, rectangle, and number line. See the online article for
the color version of this figure.
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research to educational practice: Koedinger and colleagues’ (2012)
Knowledge-Learning-Instruction framework (KLI; also see Koed-
inger et al., 2013). KLI offers the alignment hypothesis: instruc-
tional interventions are most effective if they enhance learning
processes that match the complexity of the to-be-learned compe-
tency. Hence, we use KLI to consider (a) the complexity of
connection-making competencies that are important for domain
expertise, (b) through which learning processes students acquire
these competencies, and (c) which instructional interventions may
match their complexity. As illustrated in Figure 2, these theoretical
considerations lead to the hypothesis that combining support tai-
lored to each type of connection-making competency enhances
students’ learning of fractions knowledge.

Connection-making competencies in domain expertise.
The literature on expertise provides insights into how connection
making among MGRs relates to domain expertise. Our review of
this research suggests that two connection-making competencies
play an important role in expertise (see Rau, 2016, for an over-
view): understanding of connections (Ainsworth, 2006; Dreyfus &
Dreyfus, 1986; Patel & Dexter, 2014; Richman et al., 1996) and
perceptual fluency in connection making (Dreyfus & Dreyfus,
1986; Gibson, 1969, 2000; Pape & Tchoshanov, 2001; Richman et
al., 1996). To analyze the complexity of these competencies, we
draw on KLI’s definition of a knowledge component as an “ac-
quired unit of cognitive function . . . that can be inferred from
performance on a set of related tasks” (Koedinger et al., 2012, p.
764).

Understanding of connections among GRs means that a student
can map visual features of one GR to those of a different GR
because they show the same concept (Ainsworth, 2006; Charalam-
bous & Pitta-Pantazi, 2007; Cramer, 2001; Kozma & Russell,
2005; Patel & Dexter, 2014). For example, consider a student who
sees the GRs shown in Figure 1. The student may map the shaded
section in the circle to the section between zero and the dot in the

number line because both visual features depict the numerator, and
he or she may relate the number of total sections in the circle to the
sections between 0 and 1 in the number line because both features
show the denominator. By reasoning about these connections, the
student may understand the abstract principle that both GRs ex-
press fractions as portions of a unit, measured by partitioning the
unit into equal sections. Under KLI, such reasoning involves
learning of complex knowledge components because it requires
that students learn a principle that applies in multiple situations
(e.g., a proportion can be shown in multiple ways: circles, rectan-
gles, number lines, etc.).

Perceptual fluency in making connections is the ability to
quickly and effortlessly see holistic, corresponding visual patterns
across different GRs. For example, a student should see “at a
glance” that the circle and the number line show the same propor-
tion of a unit. Perceptual fluency in connection making is related
to domain expertise because it frees “cognitive head room” that
allows students to reason about domain-relevant concepts (Gibson,
2000; Kellman & Massey, 2013; Richman et al., 1996). Under
KLI, perceptual fluency involves learning of simple knowledge
components because there is a one-to-one mapping between the
GRs (e.g., circle and number line) and the visual pattern (e.g.,
proportion of unit covered).

Connection-making processes that lead to connection-
making competencies. KLI moves beyond the analysis of
knowledge components by relating them to the learning processes
through which students acquire them. Students learn complex
knowledge components via sense-making processes. These pro-
cesses are verbally mediated because they involve explanations of
principles of how GRs depict conceptually relevant information
(Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Gentner, 1983;
Koedinger et al., 2012). They are explicit in that students have to
willfully engage in them (Chi, de Leeuw, Chiu, & Lavancher,
1994; diSessa & Sherin, 2000). The literature on learning with

Figure 2. Theory of change of how working on connection-making problems (sense-making problems,
fluency-building problems) foster learning processes (verbally mediated sense-making processes, nonverbal
inductive and refinement processes) and representational competences (understanding of connections and
perceptual fluency in making connections) that enhance students’ learning of robust domain knowledge (robust
fractions knowledge). For each mechanism, the figure indicates which section in the article describes prior
research regarding this particular mechanism. See the online article for the color version of this figure.
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representations often refers to sense-making processes as structure
mapping processes (Gentner & Markman, 1997) because students
map features of the representations to abstract concepts. Seufert
(2003) suggests that structure mapping is one major process
through which students integrate information from multiple rep-
resentations into a coherent understanding of domain knowledge.
diSessa’s (2004) framework of metarepresentational competence
and research on representational flexibility (Acevedo Nistal, Van
Dooren, & Verschaffel, 2013, 2015) suggest that sense-making
processes are also involved in selecting appropriate GRs to solve
domain-relevant problems.

By contrast, students learn simple knowledge components via
nonverbal inductive learning processes (Koedinger et al., 2012;
Richman et al., 1996) that they engage in when learning to cate-
gorize instances accurately and efficiently (Koedinger et al., 2012).
These processes are often nonverbal because they do not require
explicit reasoning (Kellman & Garrigan, 2009; Kellman &
Massey, 2013). They are implicit because they typically happen
unintentionally and unconsciously (Shanks, 2005) through expe-
rience with many instances (Gibson, 1969, 2000; Kellman &
Massey, 2013; Richman et al., 1996). The literature also refers to
inductive learning processes as perceptual learning and pattern
recognition (Gibson, 1969; Goldstone & Barsalou, 1998; Kellman
& Massey, 2013; Richman et al., 1996).

Instructional interventions to support connection-making
processes. According to KLI’s alignment hypothesis, instruc-
tional interventions that enhance sense-making processes are most
effective for complex knowledge components, whereas interven-
tions that enhance inductive processes are most effective for sim-
ple knowledge components.

Supporting verbally mediated sense-making processes in con-
nection making. KLI identifies principles that can guide the
design of instructional activities that support sense-making pro-
cesses (Koedinger et al., 2013). Here, we discuss two instructional
activities that apply to the case of connection making: explicitly
comparing multiple instances and providing self-explanation
prompts. Prior research has demonstrated how best to implement
these principles into support for connection making. First, sense-
making support is particularly effective if it prompts students to
self-explain mappings between representations (Ainsworth & van
Labeke, 2002; Bodemer & Faust, 2006; Seufert, 2003; van der
Meij & de Jong, 2011). Such prompts may be critical because
students typically struggle in making sense of connections (Ain-
sworth et al., 2002), especially if they have low prior knowledge
(Stern, Aprea, & Ebner, 2003). For example, Berthold and Renkl
(2009) show that self-explanation prompts increase students’ ben-
efit from multiple representations. In their experiment, self-
explanation prompts were implemented in the form of “why”-
questions, to elicit self-explanations of principled knowledge. Self-
explanation prompts are more effective if they ask students to
self-explain specific connections than if they are open-ended
(Berthold, Eysink, & Renkl, 2008; van der Meij & de Jong, 2011).

Second, sense-making support typically asks students to use
these mappings to compare how representations show analogous
information or different, complementary information about the
concepts they depict (Bodemer & Faust, 2006; Seufert, 2003;
Seufert & Brünken, 2006; van der Meij & de Jong, 2006; Van
Labeke & Ainsworth, 2002; Vreman-de Olde & De Jong, 2006).
Although most implementations of sense-making support encour-

age students to compare representations, our review of prior re-
search showed that there are two different, commonly used imple-
mentations. One common implementation of sense-making
support in computer-based learning environments uses linked rep-
resentations, where the student’s manipulations of one GR are
automatically reflected in the other GR (e.g., Ainsworth & van
Labeke, 2002; van der Meij & de Jong, 2006, 2011). Linked GRs
allow students to explore intermediate steps, mistakes, and the
final result in two or more GRs. This implementation aligns with
KLI’s cognitive dissonance principle, which states that presenting
incorrect solutions may enhance sense-making processes (Koed-
inger et al., 2013).

A second common implementation uses analogous examples.
These types of sense-making support typically provide step-by-
step guidance for students to map corresponding features across
examples so as to extract their commonalities (e.g., Bodemer &
Faust, 2006; Gutwill, Frederiksen, & White, 1999; Özgün-Koca,
2008). For example, Gutwill and colleagues (1999) found that
asking students to map features of corresponding GRs to one
another was effective in enhancing learning outcomes. Providing
analogous examples aligns with KLIs worked example’s principle
(Koedinger et al., 2013).

Studies that compared the effects of sense-making support with
linked representations and analogous examples yield contradictory
findings. There is evidence in favor of linked representations (e.g.,
van der Meij & de Jong, 2006, 2011), but there is also evidence in
favor of analogous examples (e.g., Gutwill et al., 1999; Özgün-
Koca, 2008). Hence, in the present experiment, we compare sense-
making support with linked representations and with analogous
examples, while incorporating self-explanation prompts in both.

Supporting nonverbal inductive refinement processes in con-
nection making. KLI proposes that learning of simple knowl-
edge components does not require that students engage in verbally
mediated learning processes because there is nothing to explain.
Evidence for this claim comes from studies showing that sense-
making support is ineffective for simple knowledge components in
perceptual learning (Schooler, Ohlsson, & Brooks, 1993; Schooler,
Fiore, & Brandimonte, 1997) or grammar learning (Wylie, Koed-
inger, & Mitamura, 2009). KLI identifies a number of principles to
guide the design of instructional activities that enhance nonverbal,
implicit, inductive processes (Koedinger et al., 2013). Here, we
discuss two principles that apply to perceptual fluency in connec-
tion making: immediate feedback and exposure to varied instances.

We note that the majority of connection-making support has
focused on supporting sense-making processes rather than induc-
tive processes. However, a new line of research yields a type of
intervention that aligns with the KLI principles for inductive
processes (Kellman & Massey, 2013; Kellman, Massey, & Son,
2010; Wise, Kubose, Chang, Russell, & Kellman, 2000). Kellman
and colleagues developed interventions that provide fluency-
building support for several science and mathematics topics (Kell-
man et al., 2009). These interventions ask students to rapidly
classify representations over many short problems. In line with the
KLI principle of immediate feedback, students receive correctness
feedback on these problems. Further, the problems expose students
to systematic variation, often in the form of contrasting cases, so
that irrelevant features vary but relevant features remain constant
across problems (Kellman & Massey, 2013). Studies in several
domains (e.g., Kellman & Massey, 2013) show that fluency-
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building support leads to large and lasting gains in perceptual
fluency that transfer to new instances and to learning gains on
domain knowledge tests. Hence, in the present experiment, we
investigate the effectiveness of fluency-building problems de-
signed based on Kellman and colleagues’ interventions.

Summary and Research Questions

In summary, KLI leads to the hypotheses we test in this article,
illustrated in Figure 2. We test the effects of sense-making prob-
lems that support verbally mediated sense-making processes (Fig-
ure 2, Path 1) to enhance understanding of connections (Figure 2,
Path 5), and of fluency-building problems that support nonverbal
inductive processes (Figure 2, Path 2) to enhance perceptual flu-
ency (Figure 2, Path 6). We hypothesize that combining both types
of connection-making support will enhance students’ learning of
fractions knowledge (Figure 2, Paths 7 and 8).

This hypothesis remains untested because research on sense-
making support and research fluency-building support are, to date,
separate lines of research. In particular, prior research on sense-
making support did not assess or manipulate students’ perceptual
fluency. Notably, most research on sense-making support involved
connecting a GR to text-based representations. It seems reasonable
to assume that students are fluent in reading (i.e., they have a high
level of perceptual fluency in processing text). However, we do not
know whether students in these studies had some level of percep-
tual fluency with the GR, and we do not know whether their level
of prior perceptual fluency affected their benefit from sense-
making support. Likewise, prior research on fluency-building sup-
port typically involved students who had already acquired concep-
tual understanding of the domain knowledge (e.g., Kellman et al.,
2009), which is likely to involve understanding of connections.
However, we do not know whether students’ prior knowledge
affected their benefit from fluency-building support.

We conducted a controlled classroom experiment that tested the
following research questions and hypotheses:

Research Question 1: Does connection-making support en-
hance students’ learning gains?

Hypothesis 1.1: Students who receive sense-making problems
that support connection making show higher learning gains of
fractions knowledge than students who do not.

Hypothesis 1.2: Students who receive fluency-building prob-
lems show higher learning gains than students who do not.

Hypothesis 1.3: Students who receive a combination of sense-
making and fluency-building problems show higher learning
gains than students who receive either alone.

Research Question 2: Are sense-making problems more ef-
fective if they include linked GRs or analogous examples?

This question was explorative, so we did not test specific hy-
potheses.

Research Question 3: Does connection-making support en-
hance students’ benefit from MGRs?

Hypothesis 3.1: Students who work with MGRs without
connection-making support show higher learning gains than
students who work with a single GR.

Hypothesis 3.2: Students who work with MGRs with
connection-making support show higher learning gains than
students who work with a single GR.

Classroom Experiment

Method

Experimental design. We randomly assigned individual stu-
dents to work with one of several versions of the Fractions Tutor,
which differed with respect to the types of connection-making
problems they included. Our experiment had a 2 � 3 � 1 design,
summarized in Table 1. The two experimental factors were two
types of connection-making problems: sense-making support and
fluency-building support. The sense-making factor varied whether
students received sense-making problems with linked representa-
tions (SL), sense-making problems with analogous examples (SE),
or no sense-making problems. This factor was crossed with the
fluency-building support factor, which varied whether students
received fluency-building problems (F) or not. Students in the
MGR condition received MGRs but no connection-making prob-
lems. Students in the single-graphical-representation (SGR) con-
dition received only number lines and no connection-making prob-
lems.

Participants. There were 599 4th- and 5th-grade students,
aged 9–13 years, from five elementary schools (25 classes) in one
school district in Pennsylvania who participated in the experiment.
The school district was among the 10% highest ranked in reading
and mathematics assessments of 500 Pennsylvania public school
districts in the year of 2010/2011, with about 12% of students

Table 1
Overview of Experimental Conditions

Fluency-building support Sense-making support Control

No Linked representations Analogous examples

No Multiple-graphical-representations
(MGR)

Sense-making with linked
GRs (SL)

Sense-making with analogous
examples (SE)

Yes Fluency-building (F) Sense-making with linked
GRs plus fluency-
building (SL-F)

Sense-making with analogous
examples plus fluency-
building (SE-F)

Control Single-graphical-representation (SGR)
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enrolled in free or reduced-price lunch programs, and 95% of the
students being White. The school district volunteered to participate
in this research.

Instructional materials: The Fractions Tutor. We con-
ducted the experiment in the context of the Fractions Tutor, an
effective intelligent tutoring system designed for use in real class-
rooms (Rau et al., 2013). The Fractions Tutor supports learning
through problem solving while providing immediate feedback and
on-demand hints, both related to each problem step. The Fractions
Tutor emphasizes conceptual learning by emphasizing principled
understanding of fractions as proportions of a unit while students
solve problems. The curriculum covers 10 topics (see appendix in
online supplemental material, Table 1A), covering about 10 hr of
instruction. Students worked individually at their own pace. All
conditions received 80 tutor problems: eight problems per topic,
for 10 fractions topics. For our experiment, we created different
versions of the Fractions Tutor that varied what types of support
for connection-making competencies it provides, detailed in the
following. Consequently, the problems students encountered in the
Fractions Tutor differed by condition, but we equated the number
of problem-solving steps across conditions. Pilot-testing estab-
lished that they took about the same time.

SGR condition. Students in the SGR condition worked on
number line problems only, eight per topic.

MGR condition. Students in the MGR condition worked on
eight individual-representation problems per topic. These prob-
lems involved only one GR per problem, but MGRs were used
across problems, such that the students encountered each GR an

equal number of times. Thus, the MGR condition received all three
GRs, but no connection-making problems.

Figure 3 shows an example of an individual-representation
problem. As students work through the steps of the problem, the
Fractions Tutor provides feedback. The items shown in green are
student entries with tutor feedback indicating that the value is
correct, such as values entered in input boxes, selections from
menus, and dots placed on an interactive number line. Students can
also request a hint from the tutor on every step by clicking the
brown button at the top right. Students interact with the GRs by
using buttons to partition the GR into sections and by clicking to
highlight sections in circles and rectangles or to place a dot on the
number line. They also receive feedback on these interactions.

In the remaining five conditions, the first four problems for each
topic were individual-representation problems. Students received
the same number of individual-representation problems for each
GR. The last four problems per topic were connection-making
problems (i.e., sense-making problems with linked representations,
sense-making problems with analogous examples, and/or fluency-
building problems), corresponding to the student’s experimental
condition. Table 2 illustrates how sense-making problems and
fluency-building problems were combined by contrasting three of
the conditions.

Sense-making with analogous examples (SE) condition.
Students in the SE condition received four problems per problem
in which they solved a part of the problem with one GR while
being able to reference a set of worked-out steps for an analogous
example that involved a different GR. These problems all share the

Figure 3. Example of a tutor problem with only the number-line representation. See the online article for the
color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

6 RAU, ALEVEN, AND RUMMEL



same format, illustrated in Figure 4. Students were first given
worked-out steps for a question with an area model (i.e., circle or
rectangle; Figure 4A, light green panel on the left). Next, the
problem-solving part appeared on the right (Figure 4B, light blue
panel in the middle), with steps that were analogous to those in the
example part. The problem-solving part always involved the num-
ber line. The key idea was that the analogous example uses the GR
that is more familiar to students, given that—as mentioned
above—fractions curricula tend to introduce fractions with area
models. After completing the problem, students received self-
explanation prompts to abstract a general principle from the two
GRs (e.g., that both show equivalent fractions by repartitioning the

same amount; Figure 4C, bottom). Self-explanation prompts were
implemented in a fill-in-the blank format with drop-down menus
on which students receive feedback. Similarly simple formats have
been shown to be effective in prior research with intelligent
tutoring systems or other educational technologies (Aleven &
Koedinger, 2002; Atkinson, Renkl, & Merrill, 2003) and more
effective than open-ended forms of self-explanation prompts (Gad-
gil, Nokes-Malach, & Chi, 2012; Johnson & Mayer, 2010; van der
Meij & de Jong, 2011).

Sense-making with linked representations (SL) condition.
Students in the SL condition received four problems per topic that
included support to make sense of connections with linked GRs

Table 2
Problem Sequence Per Condition: For Each Topic, Problems 1–4 (P1–P4) Are Individual-Representation Problems (I); Problems
5–8 Are Connection-Making Problems: Sense-Making Problems With Analogous Examples (SE, Underlined) or Perceptual Fluency-
Building Problems (F, Italicized)

Condition Topic P1 P2 P3 P4 P5 P6 P7 P8

SE 1 I I I I SE SE SE SE
2 I I I I SE SE SE SE

. . . . . .
F 1 I I I I F F F F

2 I I I I F F F F
. . . . . .

SE-F 1 I I I I SE SE F F
2 I I I I SE SE F F

. . . . . .

Note. Bold-underlined problems and bold-italicized problems are used in the causal path analysis.

Figure 4. Example of a sense-making problem with analogous examples. The self-explanation prompts in Part
C (highlighted in pink) were identical to sense-making problems with linked representations. See the online
article for the color version of this figure.
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(see Figure 5). Students interacted with a number line (Figure 5A)
to solve a problem, while an area model (i.e., a circle or a
rectangle) updated automatically to mimic the same steps. Because
students tend to be more familiar with area models than with
number lines, linking was implemented such that the more familiar
GR provided feedback on interactions with the less familiar GR.
The SL problems included the same self-explanation prompts as
SE problems (Figure 5B).

Fluency-building (F) condition. Students in the F condition
received four problems per topic that included fluency-building
support for connection making (see Figure 6). The fluency-
building problems were designed based on Kellman and col-
leagues’ (2010) interventions. Hence, they provided students with
numerous short categorization problems. In the equivalent frac-
tions topic, for instance, students sorted a variety of GRs using
drag-and-drop (see Figure 6). In alignment with Kellman and
colleagues’ interventions, fluency-building problems provided
only correctness feedback. Students could request hints, but hint
messages only provided general encouragement (e.g., “give it a
try!”). Finally, the fluency-building problems encouraged visual
problem-solving strategies. For example, in the equivalent frac-
tions topic, students were instructed to visually judge equivalence
rather than counting sections. To discourage counting strategies,
we included examples with sections too small to count.

Combined sense-making and fluency-building conditions.
Students in the sense-making with linked representations plus
fluency-building (SL-F) condition also received four connection-
making problems per topic: two SL problems followed by two F

problems. Similarly, students in the sense-making with analogous
examples plus fluency-building (SE-F) condition received two SE
problems followed by two F problems. We decided to provide
sense-making problems before fluency-building problems in each
topic because understanding is expected before fluency in educa-
tional practice guides (e.g., National Council of Teachers of Math-
ematics, 2000, 2006).

Test instruments. Students took the tests three times: before
they started working with the tutor (pretest), immediately after
they finished working with the tutor (immediate posttest), and 1
week after the immediate posttest (delayed posttest). The delayed
posttest was included so as to test whether students’ knowledge is
robust in that it lasts over time (Koedinger et al., 2012). We created
three equivalent test forms, which included the same type of
problems but with different numbers. We counterbalanced the
order in which the different test forms were administered.

The tests targeted robust knowledge of fractions (i.e., with
respect to domain knowledge, not connection-making knowledge)
considering two knowledge types: procedural and conceptual
knowledge. The conceptual scale included eight items that as-
sessed students’ principled understanding of fractions. The test
items asked students to reconstruct the unit of a fraction, identify
fractions from GRs, answer proportional reasoning questions, and
complete written reasoning questions about fraction comparison
tasks. The procedural scale included nine items that assessed
students’ ability to solve questions by applying algorithms. The
test items asked students to find a fraction between two given
fractions using GRs, finding equivalent fractions, addition, and

Figure 5. Example of sense-making problem with linked representations. The self-explanation prompts in Part
B (highlighted in pink) were identical to sense-making problems with analogous examples. See the online article
for the color version of this figure.
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subtraction. Both scales included multiple-choice and open-ended
items. Half of the items in both test scales were reproduction and
transfer items, respectively. Reproduction items were similar to
individual-representation problems students had encountered dur-
ing their work on the tutor. Transfer items were new relative to
those covered in the tutor. The goal in including transfer items was
to assess whether students’ knowledge is robust in that it is
transferred to unfamiliar problems (Barnett & Ceci, 2002). Exam-
ple items for both tests can be found in the appendix in online
supplemental material (Figures 1A and 2A). For questions that
required multiple steps, partial credit was given for each correct
step. The scores reported here are relative scores (i.e., ranging
from 0 to 1). The theoretical structure of the test was based on a
factor analysis with pretest data from the current experiment and
was replicated with data from the immediate and delayed posttests.
All test items were evaluated for their difficulty levels and dis-
criminatory power using item-response-theory models. Taken to-
gether, the test items covered a range of difficulty levels. All items
had good discriminatory power. Both scales had good reliability
with Cronbach’s � of .70 for the conceptual scale and Cronbach’s
� of .77 for the procedural scale.

Procedure. The study took place at the beginning of the
2011/2012 school year. Students accessed all materials online from
their school’s computer lab. They were instructed to work indi-
vidually at their own pace with the Fractions Tutor. Classroom
teachers led the sessions as they normally would during computer-
lab hours; that is, they walked around to help individual students
who needed assistance. They managed their classrooms in regular
fashion; for instance, they told students to be quiet when they were
chatting. Experimenters were present for the first 2 days of the
experiment to ensure that the Fractions Tutor worked smoothly in
the labs.

On Day 1 of the study, students completed a 30-min pretest.
They then worked on the Fractions Tutor for about 1 hr per day for
10 consecutive school days (i.e., 2 weeks, yielding about 10 hr
spent on the Fractions Tutor in total). On the last day, students
completed a 30-min posttest. One week later, students took a
delayed posttest.

Analysis. Data in education research often has complex pat-
terns of variance because of to the fact that students are nested
within classes (i.e., classes may account for a portion of the
variance) and within schools (i.e., schools may account for a
portion of the variance). Taking these sources of variance into
account in statistical analyses allows to reduce the error variance
statistical significance tests (Raudenbush & Bryk, 2002). Hierar-
chical linear models are a type of statistical model that allows
accounting for such nested sources of variance (HLM; Rauden-
bush & Bryk, 2002).

We tested a number of variables, including teacher, school
district, test form sequence, grade level, number of problems
completed, total time spent with the tutor, random intercepts and
slopes for classes and schools. We also tested whether including
each level of the HLM increased model fit. The outcome of this
selection procedure was the following four-level HLM. At level 1,
we modeled performance on each of the tests for each student. At
Level 2, we accounted for differences between students. Level 3
models random differences between classes, and Level 4 random
differences between schools. Specifically, we used the following
HLM:

Yijkl � (((� � W1) � Vkl) � �2 * sj � �3 * fj � �4 * pj � �5 * sj * pj

� �6 * fj * pj � Ujkl) � �1 * ti � Rijkl

with

Figure 6. Example of a fluency-building problem. See the online article for the color version of this figure.
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(level 1)

Yijkl � �jkl � �1 * ti � Rijkl

(level 2)

�jkl � �kl � �2 * sej � �3 * slj � �4 * fj � �5 * pj � �6 * sej * pj

� �7 * slj * pj � �8 * fj * pj � Ujkl

(level 3)

�kl � �1 � Vkl

(level 4)

�1 � � � W1

Table 3 provides an overview of the variables included in the
HLM. Index i stands for test time (i.e., immediate and delayed
posttest), j for the student, k for class, and l for the school. The
dependent variable Yijkl is studenti’s score on the dependent mea-
sures at test time ti (i.e., immediate or delayed posttest), εjkl is the
parameter for the intercept for studentj’s score, �1 is the parameter
for the effect of test time ti, �2 is the parameter for the effect of
sense-making problems with analogous examples sej, �3 is the
parameter for the effect of sense-making problems with linked
representations slj, �4 is the parameter for the effect of fluency-
building problems fj, �5 is the parameter for the effect of studentj’s
performance on the pretest pj, �6 is the parameter for an aptitude-
treatment interaction between sense-making problems with analo-
gous examples sej and studentj’s performance on pretest pj, �7 is
the parameter for an aptitude-treatment interaction between sense-
making problems with linked representations slj and studentj’s
performance on pretest pj, �8 is the parameter for an aptitude-
treatment interaction between fluency-building problems fj and
studentj’s performance on pretest pj, �kl is the parameter for the
random intercept for classk, �l is the parameter for the random

intercept for schooll, and � is the overall average. We ran this
model in the SAS software package for mixed models.

Results

We excluded students who did not complete all tests or did not
complete the Fractions Tutor in the time allocated by their class-
room teacher because they did not receive the full intervention and
did not complete all topics that were tested in the posttests. The
final sample included a total of N 	 428 (n 	 61 in the SGR
condition, n 	 64 in the MRG condition, n 	 52 in the SL
condition, n 	 59 in the SE condition, n 	 73 in the F condition,
n 	 61 in the SL-F condition, n 	 59 in the SE-F condition). The
number of students who were excluded from the analysis did not
differ significantly between conditions, 
2(6, N 	 169) 	 4.34,
p � .10. Excluded students had significantly lower pretest scores
on the conceptual knowledge test, F(1, 594) 	 6.73, p � .05, and
on the procedural knowledge test, F(1, 594) 	 5.60, p � .05, but
there were no differences between conditions (Fs � 1). Students’
lower prior knowledge may explain why they took longer in
working with the Fractions Tutor and, hence, did not finish in the
allocated time.

Table 4 shows the means and SDs for the conceptual and
procedural scales by test time and condition. Table 5 shows the
total amount of time spent on tutor problems by condition. To
verify that time spent did not differ between conditions, we used
the same HLM as described above. There were no significant
effects of sense-making support, fluency-building support, nor a
significant interaction among these factors on time spent (Fs � 1).

Learning gains. In learning experiments in real educational
settings, any difference between conditions needs to be interpreted
relative to pretest-to-posttest learning gains (Lipsey et al., 2012).
Thus, we first verified whether students learned from the Fractions
Tutor. To do so, we used a modified version of the HLM described
above on all seven conditions, using pretest scores as a repeated,
dependent measure rather than as a covariate (the SAS-code can be
found in the appendix in online supplemental material, Figure 3A).
Students performed significantly better on conceptual knowledge
at the immediate posttest (p � .0001, d 	 .40), and at the delayed
posttest (p � .0001, d 	 .60), compared with the pretest. Students
performed significantly better on procedural knowledge at the
immediate (p � .0001, d 	 .20) and at the delayed posttest (p �
.0001, d 	 .24), compared with the pretest.

Effects of connection-making support. To investigate Re-
search Question 1, whether a combination of sense-making prob-
lems and fluency-building problems leads to higher learning gains
than either type of problem alone, we applied the HLM described
above to the 2 � 3 design (i.e., without the SGR condition; the
SAS-code can be found in the appendix in online supplemental
material, Figure 4A). The parameter estimates can be found in the
appendix in online supplemental material (Tables 2A for random
intercepts, 3A for fixed effects in the conceptual knowledge
model, Table 4A for fixed effects in the procedural knowledge
model). There were no main effects of sense-making problems
(Hypothesis 1.1) or fluency-building problems (Hypothesis 1.2) on
conceptual knowledge or on procedural knowledge (Fs � 1).
There were no significant interactions of sense-making problems
or fluency-building problems with pretest performance. There was
no significant interaction on procedural knowledge (Fs � 1).

Table 3
Overview of Variables Included in the HLM

Variable Explanation

Yijkl Studenti’s score on the dependent measures at test
time ti (i.e., immediate or delayed posttest)

εjkl Intercept for studentj’s score
�1 Effect of test time ti
�2 Effect of sense-making problems with prompts for

analogical comparisons GRs sej

�3 Effect of sense-making problems with linked GRs slj
�4 Effect of perceptual fluency-building problems fj

�5 Effect of studentj’s performance on the pretest pj

�6 Aptitude-treatment interaction between sense-making
problems with analogical comparisons sej and
studentj’s performance on pretest pj

�7 Aptitude-treatment interaction between sense-making
problems with linked GRs slj and studentj’s
performance on pretest pj

�8 Aptitude-treatment interaction between perceptual
fluency-building problems fj and studentj’s
performance on pretest pj

�kl Random intercept for classk

�l Random intercept for schooll
� Overall average
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However, there was a significant interaction between sense-
making problems and fluency-building problems on conceptual
knowledge, F(2, 343) 	 4.11, p 	 .017, 2 	 .03, such that
students who received both types of problems performed best on
the conceptual posttests. To gain further insights into this interac-
tion effect, we turn to Research Question 2: are sense-making
problems more effective if they include linked GRs or analogous
examples? We examined simple effects of the sense-making factor
for the conditions with fluency-building problems (i.e., SL-F,
SE-F, and F conditions) and without fluency-building problems
(i.e., SL, SE, and MGR conditions). On conceptual knowledge,
there was a significant effect of sense-making problems among the
conditions with fluency-building problems, F(2, 343) 	 4.34, p 	
.014, 2 	 .07, such that the SE-F condition significantly outper-
formed the F condition, t(341) 	 2.82, p 	 .005, d 	 .32, and the
SL-F condition, t(342) 	 2.20, p 	 .05, d 	 .26. The difference
between the SE-F condition and the F condition was not significant
(t � 1). The effect of sense-making problems was not significant
for the conditions without fluency-building problems (F � 1), and
consequently, none of the post hoc comparisons were significant.

To investigate whether MGRs are more effective than an SGR
(Hypotheses 3.1 and 3.2), we applied a modified version of the
HLM described above to the SGR, MGR, and SE-F condition (i.e.,
the most successful connection-making condition; the SAS-code
can be found in the appendix in online supplemental material,
Figure 4A). There were no significant differences between the
MGR condition and the SGR condition (ps � .10; Hypothesis 3.1).
The SE-F condition significantly outperformed the SGR condition
on conceptual knowledge, t(115) 	 2.41, p 	 .016, d 	 .27, but
not on procedural knowledge (t � 1; Hypothesis 3.2).

Discussion

With respect to Research Question 1 (does connection-making
support enhance students’ learning gains?), our results do not support
Hypotheses 1.1 or 1.2, that problems that work on sense-making or
working on fluency-building problems would enhance robust frac-
tions knowledge, respectively. However, our results support Hypoth-
esis 1.3 for conceptual knowledge: working on a combination of
sense-making problems and fluency-building problems was effective.
Somewhat to our surprise, neither type of connection-making support
alone, but only the combination of both was effective. With respect to
Research Question 3 (Does connection-making support enhance stu-
dents’ benefit from MGRs?), our results stand in contrast to Hypoth-
esis 3.1 but support Hypothesis 3.2. Comparisons to the SGR condi-
tion show that students did not benefit from working with MGRs,
unless they received a combination of sense-making and fluency-
building support.

We did not find significant effects on procedural knowledge. It
may be that students’ conceptual knowledge benefits from con-
nection making because each representation provides a different
conceptual view on what fractions are, whereas procedural knowl-
edge may rely more on experience with algorithmic operations
tasks rather than on conceptual understanding.

With respect to our exploratory Research Question 2, whether
problems that help students make sense of connections are more

Table 4
Means (and SDs) for Conceptual and Procedural Knowledge at Pretest, Immediate Posttest, Delayed Posttest

Measure Condition Pretest
Immediate

posttest
Delayed
posttest

Conceptual knowledge Multiple-graphical-representations (MGR) .33 (.20) .45 (.23) .48 (.26)
Sense-making with linked GRs (SL) .38 (.20) .49 (.23) .51 (.26)
Sense-making with analogous examples (SE) .36 (.22) .43 (.20) .49 (.26)
Fluency-building (F) .31 (.21) .37 (.22) .44 (.24)
Sense-making with linked representations plus

fluency-building problems (SL-F)
.36 (.20) .43 (.24) .49 (.25)

Sense-making with analogous examples plus
fluency-building problems (SE-F)

.39 (.21) .52 (.24) .58 (.26)

Single-graphical-representation (SGR) .37 (.20) .43 (.25) .48 (.20)
Procedural knowledge Multiple-graphical-representations (MGR) .25 (.25) .30 (.28) .30 (.26)

Sense-making with linked representations (SL) .21 (.18) .26 (.24) .26 (.24)
Sense-making with analogous examples (SE) .26 (.21) .29 (.24) .31 (.27)
Fluency-building condition (F) .19 (.17) .23 (.20) .25 (.22)
Sense-making with linked representations plus

fluency-building problems (SL-F)
.20 (.18) .25 (.21) .26 (.21)

Sense-making with analogous examples plus
fluency-building problems (SE-F)

.26 (.20) .32 (.26) .33 (.26)

Single-graphical-representation (SGR) .21 (.20) .25 (.22) .27 (.23)

Note. Min. score is 0, max. score is 1.

Table 5
Means (and SDs) of Total Time Spent on Tutor Problems
by Condition

Condition
Time on tutor in

minutes

Multiple-graphical-representations (MGR) 232.04 (62.88)
Sense-making with linked GRs (SL) 206.27 (60.3)
Sense-making with analogous examples (SE) 213.7 (58.32)
Fluency-building (F) 199.25 (54.97)
Sense-making with linked representations

plus fluency-building problems (SL-F) 215.83 (58.43)
Sense-making with analogous examples plus

fluency-building problems (SE-F) 203.51 (53.61)
Single-graphical-representation (SGR) 189.47 (41.54)
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effective if they include linked GRs or analogous examples, we
find that analogous examples lead to higher learning gains on a test
of robust fractions knowledge than linked GRs.

Causal Path Analysis Modeling

The experiment showed that only the combination of sense-
making problems and fluency-building problems was effective in
enhancing students’ learning of domain knowledge. This finding
leads to open questions about how sense-making processes and
inductive refinement processes interact (Figure 2, Paths 3 and 4).
Hence, we seek to better understand the nature of this interaction
through an additional data source—the tutor log data as an indi-
cator of problem-solving performance—using causal path analysis
modeling. The logs provide a detailed record of students’ interac-
tions with the Fractions Tutor at the “transaction” level (i.e.,
attempts at steps, hint requests, etc.). Given that sense-making
problems with analogous examples were more effective than those
with linked GRs, we focused on the SE conditions in this analysis.

Hypotheses

We investigate two possible mechanisms by which sense-
making problems and fluency-building problems might interact.
One mechanism may be that working on fluency-building prob-
lems enhances students’ benefit from sense-making problems (Fig-
ure 2, Path 3; we will refer to this as the fluency hypothesis).
According to the fluency hypothesis, perceptually fluent students
may benefit from increased cognitive capacity during subsequent
learning tasks (Kellman et al., 2009; Koedinger et al., 2012).
Therefore, they should show higher performance on sense-making
problems. We contrast the fluency hypothesis to the practice
hypothesis that receiving more practice on sense-making problems
leads to higher performance on sense-making problems. The SE
condition provides four sense-making problems per topic, whereas
the SE-F condition provides only two sense-making problems per
topic. Therefore, the practice hypothesis predicts that the SE
condition should show higher performance on sense-making prob-
lems than the SE-F condition. To see the effect of having practice
with fluency-building problems on students’ performance on
sense-making problems, we compare the SE condition to the SE-F
condition. In the SE condition, problems P5, P6, P7, and P8 were
sense-making problems (for each of the 10 topics, see Table 2). In
the SE-F condition, only problems P5 and P6 were sense-making
problems (for each of the 10 topics). Hence, when comparing the
SE and SE-F conditions, problems P5 and P6 of each topic serve
as the basis for the comparison (bold-underlined problems in Table
2).

Another mechanism may be that working on sense-making
problems enhances students’ benefit from fluency-building prob-
lems (Figure 2, Path 4; sense-making hypothesis). Prior research
shows that students have difficulties in making sense of connec-
tions at a conceptual level and typically do not make connections
spontaneously (Ainsworth et al., 2002; Rau et al., 2014). There-
fore, the sense-making hypothesis predicts that students may not
be able to discover what features of the GRs depict meaningful
information while working on fluency-building problems, which
may lead to inefficient learning strategies (e.g., trial-and-error) that
can impede their benefit from fluency-building problems. In par-

ticular, the visual features that denote fractions may not be easy to
detect, and can perhaps not be learned in a purely inductive
manner. Therefore, sense-making support could increase students’
performance on fluency-building problems. We contrast the sense-
making hypothesis to the practice hypothesis that receiving more
practice on fluency-building problems leads to higher performance
on fluency-building problems. The F condition provides four
fluency-building problems per topic, whereas the SE-F condition
provides two fluency-building problems per topic. Therefore, the
practice hypothesis predicts that the F condition should show
higher performance on fluency-building problems than the SE-F
condition. To investigate the effect of having practiced on sense-
making problems on students’ performance on fluency-building
problems, we compare the F condition to the SE-F condition. In
the F condition, problems P5, P6, P7, and P8 were fluency-
building problems (for each of the 10 topics, see Table 2). In the
SE-F condition, only problems P7 and P8 were sense-making
problems (for each of the 10 topics). Hence, when comparing the
F and SE-F conditions, problems P7 and P8 for each topic serve as
the basis for the comparison (bold-italicized problems in Table 2).
In testing the fluency hypothesis and the sense-making hypothesis,
we allow for the possibility that they are not mutually exclusive.

Method

To investigate these hypotheses, we use causal path analysis,
which provides a unified framework to test mediation hypotheses,
estimate total effects, and separate direct from indirect effects in a
coherent statistical model (Bollen & Pearl, 2013; Chickering,
2002; Spirtes et al., 2000). We constructed causal path analysis
models that correspond to the fluency hypothesis and to the sense-
making hypothesis, respectively.

Because we selected the SE and SE-F conditions for the fluency
hypothesis model and the F and SE-F conditions for the sense-
making hypothesis model, 190 students were included in the
analysis (n 	 59 in the SE condition, n 	 73 in the F condition,
and n 	 58 in the SE-F condition).We operationalized perfor-
mance on the tutor problems as error rates: making fewer errors
while solving a tutor problem indicates higher problem-solving
performance. Rather than using the overall error rate, we classified
errors based on the detailed knowledge components to which they
relate. For the fluency hypothesis model, we computed the error
rate for each knowledge component across the sense-making prob-
lems P5 and P6 for all 10 topics (bold-underlined problems in
Table 2). For the sense-making hypothesis model, we computed
the error rate for each knowledge component across the fluency-
building problems P7 and P8 for all 10 topics (bold-italicized
problems in Table 2). Altogether, the knowledge component
model yielded 12 error types that students could make on sense-
making problems, and 11 error types that students could make on
fluency-building problems, summarized in Tables 6 and 7. Next,
included only those error types in the causal path analysis model
that (a) were significant predictors of performance on the concep-
tual posttest, while controlling for pretest, and (b) significantly
differed between conditions (i.e., the italicized error types in
Tables 6 and 7).

We constructed the causal path analysis models using an auto-
matic algorithm that searches for models that are theoretically
plausible and consistent with the data; namely, the Tetrad IV
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program’s1 GES algorithm. Tetrad IV allows us to specify assump-
tions that constrain the space of models searched (Chickering,
2002; Spirtes et al., 2000) and to find the model with the best
model fit among models that are theoretically tenable and com-
patible with the experimental design (Spirtes et al., 2000). Inde-
pendent variables in the causal path analysis were sense-making
support and fluency-building support. Dependent variables were
students’ performance on the conceptual pretest, immediate, and
delayed posttest. Mediators were error types students made on the
sense-making problems for the fluency hypothesis model, and
error types students made on the fluency-building problems in the
sense-making hypothesis model.

When conducting a model search, we can narrow the search
space based on the knowledge we have about the nature of our data
(Spirtes et al., 2000). We assumed that the experimental conditions
are exogenous and causally independent, that the pretest was not
influenced by the conditions, that the pretest is an exogenous
variable and causally independent of the conditions. Furthermore,
we assume that the mediators are before the immediate posttest
and the delayed posttest, and that the immediate posttest is before
the delayed posttest. The search space is defined by the fully
saturated model for each hypothesis because it contains all possi-
ble edges (or “effects”) compatible with these assumptions and
with the experimental design.

We had Tetrad search among models that had all, none, or a
subset of the edges in the fully saturated model. In the model
search, each edge is automatically evaluated as to whether includ-
ing it yields a better model fit than not including it, and whether it
represents a statistically significant effect. Figure 7 (left) illustrates
the fully saturated model for the fluency hypothesis (that includes
only performance variables related to sense making as possible
mediators). Figure 7 (right) illustrates the fully saturated model for
the sense-making hypothesis (that includes only performance vari-
able related to perceptual fluency as possible mediators). Thus,
Figure 7 illustrates that, even with our assumptions, the search
space contains at least 215 (over 32 thousand) distinct path models

that are plausible tests for the sense-making hypothesis, and 220

(over 1 million) for the fluency hypothesis. The outcomes of the
model search are two causal path analysis models, one correspond-
ing to the fluency hypothesis, one corresponding to the sense-
making hypothesis, each consistent with the data and hence allow-
ing us to trust the parameters of the model.

Results

To test the fluency hypothesis, we inspect the model shown in
Figure 8, which is the best-fitting model Tetrad IV found for the
fluency hypothesis. The model fits the data well (
2 	 8.32, df 	
5, p 	 .14; comparative fit index [CFI] 	 0.9943; root mean
square error of approximation [RMSEA] 	 0.0808).2 The stan-
dardized coefficients and their standard errors, the significance
tests for each effect, and the implied covariance matrices for the
model are provided in the appendix in online supplemental mate-
rial (Tables 5A, 6A, and 7A). Figure 8 shows unstandardized
coefficients, which are easier to interpret with respect to the effects
of number of errors students made. Further, because scores on all
tests range between 0 and 1, the effects on the posttests are easy to
compare even though coefficients are unstandardized. Recall that
this model compares the SE and SE-F conditions based on errors

1 Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, contains
a causal model simulator, estimator, and over 20 model search algorithms,
many of which are described and proved asymptotically reliable in (Spirtes,
Glymour, & Scheines, 2000).

2 The usual logic of hypothesis testing is inverted in path analysis. The
p-value reflects the probability of seeing as much or more deviation
between the covariance matrix implied by the estimated model and the
observed covariance matrix, conditional on the null hypothesis that
the model that we estimated was the true model. Thus, a low p-value means
the model can be rejected, and a high p-value means it cannot. Conven-
tional thresholds are .05 or .01, but like other � values, this is somewhat
arbitrary. The p-value should be higher at low sample sizes and lowered as
the sample size increases, but the rate is a function of several factors, and
generally unknown.

Table 6
Error Types on Fluency-Building Problems and Number of Occurrences Per Condition (Summed Up for All Students Across Fluency-
Building Problems P7 and P8)

Error type Knowledge component Number in F Number in SE-F

nameCircleMixed-Error Finding circle representations that show the same fraction as a number line
or a rectangle

355 126

equivalenceError Finding equivalent fraction representations 2,899 2,157
improperMixed-Error Finding representations of improper fractions 1,380 1,608
additionMixedError Finding representations that show the addend of a given sum equation

depicted by representations
207 176

compareMixed-Error Finding representations that show a fraction smaller or larger than the
given one

436 307

diffMixedError Finding representations that show the difference of two fractions 282 238
nameNLMixed-Error Finding number line representations that show the same fraction as a circle

or a rectangle
949 599

nameRectMixed-Error Finding rectangle representations that show the same fraction as a number
line or a circle

385 133

subtractionMixed-Error Finding representations that show the subtrahend of a given difference
equation depicted by representations

214 240

sumMixedError Finding representations that show the sum of two fractions 256 205
unitMixedError Finding the unit of a given fraction 1,050 1,138

Note. Italicized error types were selected for further analysis.
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students made on the sense-making problems. Further recall that,
according to the fluency hypothesis, we expect that practice on
fluency-building problems reduces error rates on sense-making
problems, and that error rates on sense-making problems mediates
the effect of condition on the posttests. Finally, recall that the
alternative practice hypothesis suggests that, because students in
the SE-F condition have less practice on sense-making problems,
they should show higher rates of sense-making errors. The model
in Figure 8 shows that students in the SE-F condition, compared to
the SE condition, made more selfExplanationErrors (i.e., the av-
erage student in the SE-F condition made 5.662 more errors in
answering self-explanation prompts than the average student in the
SE condition, and for each of these errors, the student looses .005
points on the final posttest) and more place1Errors (i.e., errors in
finding 1 on a number line). Both decreased learning gains. Thus,
students’ performance on sense-making problems mediated a neg-
ative effect of fluency-building support on students’ posttest per-
formance. This negative mediation effect is in line with the alter-
native hypothesis that practice alone explains performance on
sense-making problems. In addition, in line with the overall find-
ing of the experiment, Figure 8 shows that fluency-building sup-
port had a direct positive effect on posttest performance, which
was stronger than the negative mediation effects. That is, the direct
path of .116 is larger than the sum of the mediating paths (�.005 �

5.662 � �.012 � .166 � 5.662).
To test the sense-making hypothesis, we inspect the model in

Figure 9, which shows the best-fitting model for the sense-making
hypothesis. This model fits the data reasonably well (
2 	 16.10,
df 	 6, p 	 .013; CFI 	 0.9822; RMSEA 	 0.1338).3 The
standardized coefficients and their standard errors, the significance
tests for each effect, and the implied covariance matrices for the
model are provided in the appendix in online supplemental mate-
rial (Tables 5A, 6A, and 7A). Figure 9 shows the unstandardized
coefficients. Recall that this model compares the F and SE-F
conditions based on errors students made on the fluency-building
problems. Further recall that, according to the sense-making hy-

pothesis, we expect that practice on sense-making problems leads
to a lower rate of errors on the fluency-building problems, which
in turn mediates the effect of condition on the posttests. Finally,
recall that the alternative practice hypothesis suggests that, because
students in the SE-F condition have less practice on fluency-
building problems, they should show higher error rates on fluency-
building problems. The model in Figure 9 shows that students in
the SE-F condition made more nameCircleMixed errors (i.e., er-
rors in identifying the fraction depicted by a circle) but fewer
improperMixedErrors (i.e., errors in identifying an improper frac-
tion) and fewer equivalence errors (i.e., errors in identifying equiv-
alent fractions) than students in the F condition. Students who
made fewer nameCircleMixedErrors also made more subtraction-
MixedErrors (i.e., errors in finding the difference between two
given fractions) and improperMixedErrors, which decreased per-
formance in the conceptual posttest. Thus, performance on
fluency-building problems mediated the positive effect of sense-
making support on the conceptual posttest. There were no addi-
tional direct effects of sense-making support on posttest, so that
students’ higher performance on fluency-building problems fully
mediated the positive effect of sense-making support on learning
gains.

Discussion

The results from the causal path analysis are consistent with the
sense-making hypothesis but stand in contrast to the fluency hy-
pothesis: we did not find evidence that working on fluency-
building problems helps students benefit from sense-making
problems, but that fluency-building problems decrease their per-

3 Ibid. It is worth noting that this model asserts that any effect the SE-F
condition (compared to the F condition) has on the post-test or delayed
post-test is entirely mediated by the three variables measuring error rates.
Thus, it makes a bold and easily falsifiable prediction that is tested by this
model.

Table 7
Error Types on Sense-Making Problems and Number of Occurrences Per Condition (Summed Up for All Students Across Sense-
Making Problems P5 and P6)

Error type Knowledge component Number in SE Number in SE-F

place1Error Locating 1 on the number line given a dot on the number line and the
fraction it shows

150 222

selfExplanationError Incorrect response to self-explanation prompt 1,320 1,629
comparisonError Comparing two fractions 92 82
denomError Entering the denominator of a fraction 972 837
equivalence-CompareError Judging whether two fractions are equivalent 19 18
multiplyError Entering a number by which to multiply numerator or denominator to

expand a given fraction
30 29

nlPartitionError Partitioning the number line to show an equivalent fraction 1,913 2,115
numberSections-UnitError Finding the denominator of a fraction by indicating how many

sections the unit was divided into
41 44

numError Entering the numerator of a fraction 1,559 1,390
placeDotError Placing a dot on the number line to show a fraction 198 253
sectionsBetween-0–1 Indicating that the denominator in a number line is shown by the

sections between 0 and 1
61 44

unitError Selecting the unit for a fraction given the symbolic fraction and a
graphical representation

123 115

Note. Italicized error types were selected for further analysis.
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formance on sense-making problems. Thus, the mediation effect
shown in Figure 8 suggests that receiving fluency-building prob-
lems comes at the cost of lower performance on sense-making
problems: students tend to make more selfExplanationErrors and
more place1Errors. Recall that students in the SE condition work
on twice as many sense-making problems than students in the
SE-F condition, so they receive more practice on these problems
compared to the SE-F condition (see Table 2). Hence, the practice
hypothesis predicts that they perform somewhat worse on those
problems, simply because they have less practice. The model in
Figure 8 is in line with the practice hypothesis. Furthermore, the
model in Figure 8 puts the performance on sense-making problems
in relation to learning gains: higher performance on sense-making
problems is associated with higher learning benefit from sense-
making problems. However, because we do not find evidence that
fluency-building problems help students learn from sense-making
problems, our results do not support the fluency hypothesis.

By contrast, the results from the causal path analysis models are in
line with the sense-making hypothesis: working on sense-making
problems helps students learn from fluency-building problems. The
model in Figure 9 demonstrates that, although students who receive
sense-making problems make more nameCircleMixedErrors, they
make fewer equivalenceErrors and improperMixedErrors while work-

ing on fluency-building problems. The reduction of equivalenceErrors
and improperMixedErrors mediates the effect of sense-making sup-
port on learning gains. NameCircleMixedErrors are confined to
an early topic in the Fractions Tutor, whereas equivalenceErrors
and improperMixedErrors occur later in the Fractions Tutor.
The results, therefore, suggest that working on sense-making
problems reduces errors later during the learning phase, which
leads to higher learning gains. This finding is particularly
interesting because it indicates that having worked on sense-
making problems leads to higher performance on fluency-
building problems, even though students in the F condition had
more practice opportunities on fluency-building problems
(practice hypothesis). Thus, it seems that sense-making prob-
lems prepare students to benefit from subsequent fluency-
building problems— even more so than practice with fluency-
building problems does.

General Discussion

Our experiment investigated how best to support students in
making connections among MGRs. Our results support our hy-
pothesis that a combination of sense-making and fluency-building
support is most effective with respect to learning of conceptual
knowledge. Surprisingly, we found that only the combination of
sense-making problems and fluency-building problems is effec-

Figure 7. Saturated models for the fluency hypothesis (left) and the sense-making hypothesis (right). See the
online article for the color version of this figure.

Figure 8. Fluency-hypothesis model with unstandardized parameter es-
timates. Paths that describe a negative effect of fluency-building support on
posttest performance (immediate and final) are highlighted in red, paths
that describe a positive effect are highlighted in green. See the online
article for the color version of this figure.

Figure 9. Sense-making hypothesis model with unstandardized parame-
ters. See the online article for the color version of this figure.
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tive; taken alone, neither sense-making problems nor fluency-
building problems were effective. By establishing that sense-
making problems and fluency-building problems interact, this
finding extends prior research that has—to the best of our knowl-
edge—exclusively focused on either sense-making support (e.g.,
Bodemer & Faust, 2006; Seufert, 2003; van der Meij & de Jong,
2006), or on fluency-building support (e.g., Kellman et al., 2009).
As argued above, students in prior research on sense-making
support may have had some level of perceptual fluency in inter-
preting the representations used in these studies (i.e., mostly text-
based and numerical representations). Likewise, students in prior
research on fluency-building support likely had, to some extent,
understanding of connections because they had typically received
prior instruction on the domain knowledge. Our finding that both
types of support are necessary does not necessarily contradict prior
research. Rather, our findings extend it by indicating that the
aspects that were held constant across conditions in prior research
may be an important prerequisite to the effectiveness of either type
of support. At a practical level, our results suggest that standard
sense-making support should take into account students’ level of
perceptual fluency. Instructors may need to ensure that students are
indeed perceptually fluent in making connections, in which case
sense-making support alone could be effective (although this hy-
pothesis has not been tested), or they might need to combine
sense-making support with fluency-building support (as in our
experiment).

It is also interesting to reflect on the fact that we did not find
evidence that MGRs without connection-making support lead to
higher learning gains than a single GR that is considered the
“superior” GR by some researchers: the number line (National
Mathematics Advisory Panel, 2008; Siegler et al., 2010). We
found that MGRs were more effective than a single GR only if
students received a combination of sense-making and fluency-
building support. This finding is in line with our own prior re-
search (Rau, Aleven, Rummel, & Rohrbach, 2012), which shows
that MGRs are not always effective in enhancing fractions learn-
ing. It is also in line with experiments in other domains that failed
to show a benefit of MGRs over learning with a single GR (e.g.,
Berthold & Renkl, 2009; Corradi, Elen, & Clareboug, 2012).
MGRs are commonly used in instruction because they emphasize
multiple conceptual perspectives. Our results support this practice
but also caution that integrating these conceptual perspectives into
their domain knowledge is a difficult task for students. To support
them in doing so, instruction may need to provide a combination
of sense-making support and fluency-building support.

The causal path analysis models provide additional insights into
the mechanisms underlying this finding. We found that sense-
making problems enhance students’ benefit from fluency-building
problems by reducing the number of certain types of errors stu-
dents make on fluency-building problems. Hence, understanding
of connections seems to provide the foundation for inductive
processes that students engage in when working on fluency-
building problems. Our findings do not support the reverse con-
clusion: we have no evidence that fluency-building problems en-
hance students’ benefit from sense-making problems. In contrast,
we found that more practice on sense-making problems yields
higher performance on sense-making problems, as expected purely
based on practice effects. Thus, it seems that, even if there are
benefits of additional cognitive headroom as a result of perceptual

fluency, they do not outweigh the advantages of practice effects on
the same type of problem.

Lipsey and colleagues (2012) suggest that effect sizes of inter-
ventions obtained in real classrooms must be interpreted in relation
to pretest-to-posttest changes. Ranging between d 	 .20 and d 	
.60 resulting from a 10-hr long intervention, effect sizes of learn-
ing gains are of small to medium size. According to Hattie’s
(2012) meta-analysis of educational interventions in realistic set-
tings, the average effect size of interventions are d 	 .40 per year
on student achievement (e.g., p. 16, p. 240 in Hattie, 2012). Thus,
our experiment shows learning gains that compare favorably to
those obtained in other studies. A similar argument can be made
when interpreting the effect sizes for the between-condition ef-
fects. The advantage of receiving a combination of sense-making
and fluency-building support compared with working with only
the number line representation had an effect size of d 	 .27. Thus,
comparing this difference to the learning gain of d 	 .40 on the
conceptual knowledge test, the benefit of combining sense-making
problems and fluency-building problems when providing students
with MGRs seems meaningful.

It is important to note a number of limitations of this research.
First, we excluded students who did not finish their work with the
Fractions Tutor because they did not receive full exposure to the
experimental intervention and because the posttests assessed
knowledge targeted in all topics of the curriculum. However, this
decision led to excluding many students, and these students had
lower pretest scores than students who were included in the anal-
ysis. Because students were randomly assigned to conditions and
because the number of excluded students did not differ by condi-
tions, this exclusion does not undermine our overall conclusions,
but implies that future research should test that our findings
generalize to lower-performing students. We also note that the
school population was mostly White and included only a small
portion of students from low-income families. Although we cannot
think of a reason why students from more diverse backgrounds
would not benefit from a combination of sense-making and
fluency-building support, future research should empirically verify
this prediction.

The causal path analysis was limited because (unlike the HLM),
it does not allow us to take into account variance because of
students being nested in classes and schools. Not taking into
account these sources of variance means that the error variance in
the causal path analysis is larger than in the HLM analysis, which
reduces the statistical power of the analysis. While this limitation
does not affect the internal validity of the results, the lower power
of the analysis means that there might be effects in the data that we
did not detect. Future research should address this issue by using
a larger sample for a causal path analysis.

We also note limitations resulting from the presentation of
instructional materials. We conducted our experiment in the con-
text of an intelligent tutoring system, an effective type of educa-
tional technology that is widely used in classrooms across the
United States. Even though this context represents a realistic
educational scenario, further research should test whether our
results generalize to out-of-technology contexts. For example,
future research should investigate whether our findings generalize
to contexts in which students use physical representations or a
combination of physical and virtual representations. Further, stu-
dents received sense-making problems before fluency-building
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problems. Because this sequence was repeated for each topic of the
tutor, we believe that it does not affect the validity of the effects we
found in the causal path analysis. However, the effects of fluency-
building problems on students’ performance on sense-making
problems may have been stronger if fluency-building problems
had been directly followed by sense-making problems (rather than
by individual-representation problems). This limitation may have
affected the power of the analysis, but not the validity: we may not
have detected all effects, but we can trust the effects that we did
detect, and we can trust that the effects we did detect are stronger
than the effects we may not have detected.

Conclusions

We tested a prediction that resulted from applying KLI to the
case of connection making among MGRs; namely, that students
will benefit most from support that targets verbally mediated
sense-making processes through which students acquire under-
standing of connections, and support that targets nonverbal, induc-
tive processes through which students acquire perceptual fluency
in making connections. Our experiment extends prior research that
has only focused on either sense-making support (e.g., Bodemer &
Faust, 2006; Seufert, 2003; van der Meij & de Jong, 2011) or
fluency-building support (e.g., Kellman et al., 2009; Kellman &
Massey, 2013), but has not investigated potential interactions
between these two types of connection-making support. Our re-
sults were more pronounced than expected: the combination of
sense-making support and fluency-building support was necessary
for students to benefit from MGRs, compared to a single GR. The
causal path analysis suggests sense-making support provides the
foundation for students’ benefit from fluency-building support.
This finding yields a new testable hypothesis: students will learn
best when sense-making support is provided before fluency-
building support rather than vice versa.

Given the pervasiveness of MGRs in STEM and the well-
documented need for connection-making support, our findings
have the potential to apply to many domains. The research pre-
sented in this article is only a first step in this direction, and we
hope it will inspire future research on sense making and perceptual
fluency in connection making.
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