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Abstract. Previous research demonstrates that multiple representations of 

learning content can enhance students’ learning, but also that students learn 

deeply from multiple representations only if the learning environment supports 

them in making connections between the representations. We hypothesized that 

connection-making support is most effective if it helps students make both in 

making sense of the content across representations and in becoming fluent in 

making connections. We tested this hypothesis in a classroom experiment with 

599 4th- and 5th-grade students using an ITS for fractions. The experiment 

further contrasted two forms of support for sense making: auto-linked 

representations and the use of worked examples involving one representation to 

guide work with another. Results confirm our main hypothesis: A combination 

of worked examples and fluency support lead to more robust learning than 

versions of the ITS without connection-making support. Therefore, combining 

different types of connection-making support is crucial in promoting students’ 

deep learning from multiple representations.  
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1   Introduction 

Multiple representations, such as charts and diagrams in mathematics, are universally 

used in instructional materials because they can emphasize important aspects of the 

learning content. Representations as learning tools may be especially beneficial when 

incorporated in intelligent tutoring systems (ITSs): rather than working with static 

representations, students can interact with virtual manipulatives [1], and they can be 

tutored on their interactions with them. There is extensive evidence in the educational 

psychology literature that learning with multiple representations can enhance 

students’ deep understanding of the domain [2,3]. However, research has also shown 

that, in order to benefit from multiple representations, students need to make 

connections between them [2,4,5]. Yet, students find it difficult to make these 

connections [2] and tend not to make them spontaneously [2,6]. Therefore, they need 

to be supported in doing so [7]. 



In the domain of fractions, multiple representations such as circles, rectangles, and 

number lines are commonly used [8]. Each representation provides a different 

conceptual view on fractions [9]. In order to gain a deep understanding of fractions, 

students need to understand the conceptual views presented by each representation, 

and they need to relate the representations to one another [8,10]. Being able to relate 

these different representations is key to developing a deep understanding of fractions 

(e.g., as numbers that have magnitudes), which is an important educational goal [10]. 

A crucial question when designing learning environments that use multiple 

representations is therefore what kind of connection-making support will promote 

deep learning. Following the KLI theoretical framework for robust learning [11], we 

distinguish between two types of learning processes: sense-making processes and 

fluency-building processes. Making sense of connections means (in the case of 

fractions) that students conceptually understand how different representations relate to 

each other (e.g., why two representations show the same fraction). Fluently making 

connections means to fast and effortlessly relate different representations (e.g., 

representations that show the same value). Prior research on how best to support 

students in making connections between multiple representations has focused only on 

supporting sense-making processes, for instance, by supporting students in relating 

corresponding elements of representations at a structural level [12]. However, both 

types of learning processes may be necessary in order to develop competence in a 

complex domain [11]. Applying this notion to learning with multiple representations, 

we hypothesize that students learn most robustly when, in addition to being supported 

in making sense of connections between multiple representations, they are supported 

in fluently making connections between multiple representations.  

A crucial question regarding sense-making support is further: how much 

automated support should students receive from the system [2]? On the one hand, 

providing students with auto-linked representations (AL), in which the system, rather 

than the student, connects and updates representations, has been shown to enhance 

learning in complex domains [5]. On the other hand, research has demonstrated that 

students should actively create connections between representations, rather than 

passively observing correspondences [13]. Thus, we compare two ways of sense-

making support, one in which the tutor demonstrates connections (i.e., auto-linked 

representations, AL), one in which more of that burden falls on the student. A well-

researched way of supporting active sense-making processes is to provide students 

with worked examples (WEs), that is, solved problems with solution steps shown 

[14]. WEs have been shown to be effective in many domains [14], and have been used 

in ITSs (e.g., [15]). Berthold and Renkl [16] compared students’ learning from multi-

representational WEs to single-representation WEs and found that multiple 

representations can enhance students’ learning from WEs. However, to our 

knowledge, WEs have not yet been used as a means to support students in making 

connections between multiple representations. In our study, students use a WE that 

uses a more familiar representation as a guide to solve an isomorphic problem that 

involves a less familiar representation. As they integrate the example problem and the 

new problem, they can make connections between the two representations. We 

hypothesize that WE support (compared to AL support) will be the more effective 

type of sense-making support in promoting students’ learning of fractions, since 

students have to engage more actively in making connections. 



We address these hypotheses in the context of a proven ITS technology, namely, 

Cognitive Tutors [17]. The Fractions Tutor has been tested and iteratively improved 

based on five experimental studies with almost 3,000 students. Although Cognitive 

Tutors have been widely researched with middle- and high-school students [18] (e.g., 

Rittle-Johnson and Koedinger [19] report on a study in which 6th-graders used a 

Cognitive Tutor for fractions), the effectiveness of Cognitive Tutors and other ITSs 

for elementary-school students remains under-researched. 

We conducted a classroom experiment to investigate the effects of sense-making 

support for connection making and of fluency support for connection making on 

students’ understanding of fractions. 599 4th- and 5th-grade students worked with the 

Fractions Tutor during their regular mathematics class. Students either received sense-

making support for connection making (AL or WE) or not. This factor was crossed 

with a second experimental factor, namely, whether or not students received fluency 

support for connection making. Since many education researchers and practitioners 

emphasize the importance of helping students understand number lines [8,10], we 

included a version of the Fractions Tutor that provides only a number line as a control 

condition.  

2   Methods 

2.1   Fractions Tutor 

 

Fig. 1. Example of sense-making support: worked-example problem. 

The ITS used in the present study used three different interactive representations of 

fractions: circles, rectangles, and number lines. Each representation emphasizes 

certain aspects of different conceptual interpretations of fractions [9]. The circle as a 

part-whole representation depicts fractions as parts of an area that is partitioned into 

equally-sized pieces. The rectangle is a more elaborate part-whole representation as it 



can be partitioned vertically and horizontally. At the same time, it does not have a 

standard shape for the unit, like the circle does. Finally, the number line is considered 

a measurement representation and thus emphasizes that fractions can be compared in 

terms of their magnitude, and that they fall between whole numbers.  

The Fractions Tutor covers a comprehensive set of ten topics including interpreting 

representations, reconstructing the unit of fraction representations, improper fractions 

from representations, equivalent fractions, fraction comparison, fraction addition and 

subtraction. In our classroom study, students in all conditions first worked on six 

introductory problems that introduced the representations. They then worked on eight 

problems per fractions topic, yielding a total of 80 tutor problems. The sequence of 

tutor problems included both single-representation problems and (in the connection-

making support conditions) multiple-representation problems. 

To support students in making connections between the different representations, 

we created three new types of tutor problems. WE problems and AL problems were 

designed to provide sense-making support. Each was designed to emphasize 

conceptual correspondences between the two representations. In the WE problems 

(see Fig. 1), an example of a solved problem with a familiar representation (i.e., circle 

or rectangle) was displayed on the left. This worked example contained filled-in 

answers for all except for the last step. After the student filled in the last step of the 

worked example, an isomorphic problem with a less familiar representation (number 

line) showed up on the right.  The worked example served to guide students’ work on 

this problem. To solve the problem, students manipulated the interactive number line. 

The AL problems followed the same side-by-side format with problem steps lined up, 

but there was no WE. Rather, as students completed the steps in the number line 

problem, the area model representation updated automatically to mimic the steps the 

student performed on the number line. In this sense, the more familiar representation 

provided feedback on the work with the less familiar representation. (To make this 

work at a technical level, we extended the CTAT tools [20] so that the number line 

component could serve as a controller for the area model component.) The WE and 

the AL problems included self-explanation prompts at the end of each problem (see 

bottom of Fig. 1) which asked students to identify correspondences of the two given 

representations. 

The third type of connection-making problems, mixed representation problems 

(Mix; see Fig. 2), were designed to help students become fluent in connecting 

representations. Given a set of representations of fractions, students grouped them 

(through drag-and-drop) according to the fraction they represent. Students had to drag 

each individual graphical representation into the correct drop area labeled with a 

symbolic fraction. Students could drag-and-drop the fraction representations in any 

order. The drop area was able to detect which graphical representation the student 

drag-and-dropped into it, and could thereby give error feedback accordingly, when 

necessary. In each problem, multiple representations matched the same symbolic 

fraction. 

Students received error feedback and hints on all steps. Hint messages and error 

feedback messages were designed to give conceptually oriented help, often in relation 

to the representations. The single-representation problems included prompts to help 

students relate the representations to the symbolic fractions. We had found these 

prompts to be effective in an earlier experimental study [3].  



 

Fig. 2. Example of fluency support: mixed representations problem 

2.2   Test Instruments 

We assessed students’ knowledge of fractions at three test times. We created three 

equivalent test forms. Based on data from a pilot study with 61 4th-grade students, we 

made sure that the difficulty level of the test was appropriate for the target age group, 

and that the different test forms did not differ in difficulty. In our classroom study, we 

randomized the order in which the different test forms were administered.  

The tests targeted two knowledge types: procedural and conceptual knowledge. 

The conceptual knowledge scale assessed students’ principled understanding of 

fractions. The test items included reconstructing the unit, identifying fractions from 

graphical representations, proportional reasoning questions, and verbal reasoning 

questions about comparison tasks. The procedural knowledge scale assessed students’ 

ability to solve questions by applying algorithms. The test items included finding a 

fraction between two given fractions using representations, finding equivalent 

fractions, addition, and subtraction. The theoretical structure of the test (i.e., the two 

knowledge types just mentioned) was based on a factor analysis with the pretest data 

from the current experiment. We validated the resulting factor structure using the data 

from the immediate and the delayed posttests. 

2.3   Experimental Design and Procedure  

In the present paper, we report the data from 599 4th- and 5th-grade students from one 

school district with 5 different elementary schools (25 classes) in the United States.  

Students participated in the study as part of  their regular mathematics instruction. All 

students worked with versions of the Fractions Tutor designed and created 

specifically for this study. Students were randomly assigned to one of the conditions 

shown in Table 1. We used a 2 (fluency support) x 3 (sense-making support) + 1 (NL 



control condition) experimental design to investigate the effects of connection making 

support on students’ learning of fractions. The fluency support factor had two levels: 

students either received Mix problems as fluency support, or no fluency support. The 

sense-making support factor had three levels: students either received WE problems 

or AL problems as sense-making support, or no sense-making support.   

We assessed students’ knowledge of fractions three times. On the first day, students 

completed a 30-minute pretest. They then worked on the Fractions Tutor for about ten 

hours, spread across consecutive school days. The day following the tutor sessions, 

students completed a 30-minute posttest. About one week after the posttest, we gave 

students an equivalent delayed posttest.  

Table 1.  Experimental conditions1 included in the experimental study.  

 Sense-making support Control 

None Auto-linked 

representations 

Worked 

example 

Fluency 

support 

None MGR AL WE 

Mixed 

representations 
Mix AL-Mix WE-Mix 

Control NL 

3   Results 

Table 2.  Proportion correct: means (and standard deviation) for conceptual and procedural 

knowledge at pretest, immediate posttest, delayed posttest. Min. score is 0, max. score is 1. 

  pretest immediate posttest delayed posttest 

conceptual 

knowledge 

MGR .33 (.20) 

 

 

.45 (.23) 

 

 

.48 (.26) 

 

 
AL .38 (.20) 

 

 

.49 (.23) 

 

 

.51 (.26) 

 

 
WE .36 (.22) 

 

 

.43 (.20) 

 

 

.49 (.26) 

 

 
Mix .31 (.21) 

 

 

.37 (.22) 

 

 

.44 (.24) 

 

 
AL-Mix .36 (.20) 

 

 

.43 (.24) 

 

 

.49 (.25) 

 

 
WE-Mix .39 (.21) 

 

 

.52 (.24) 

 

 

.58 (.26) 

 

 

NL .37 (.20) 

 

 

.43 (.25) 

 

 

.48 (.20) 

 

 

procedural 

knowledge 

MGR .25 (.25) 

 

 

.30 (.28) 

 

 

.30 (.26) 

 

 
AL .21 (.18) 

 

 

.26 (.24) 

 

 

.26 (.24) 

 

 
WE .26 (.21) 

 

 

.29 (.24) 

 

 

.31 (.27) 

 

 
Mix .19 (.17) 

 

 

.23 (.20) 

 

 

.25 (.22) 

 

 
AL-Mix .20 (.18) .25 (.21) 

 

 

.26 (.21) 

 

 
WE-Mix .26 (.20) 

 

 

.32 (.26) 

 

 

.33 (.26) 

 

 

NL .21 (.20) 

 

 

.25 (.22) 

 

 

.27 (.23) 

 

 

                                                           
1   MGR = multiple graphical representations, AL = auto-linked representations, WE = worked 

examples, Mix = mixed representations, NL = number line 

 



 

Students who completed all tests, and who completed their work on the tutoring 

system were included in the analysis, yielding a total of N = 428. The number of 

students who were excluded from the analysis did not differ between conditions, χ² (6, 

N = 169) = 4.34, p > .10. Table 2 shows the means and standard deviations for the 

conceptual and procedural knowledge scales by test time and condition. 

A hierarchical linear model (HLM; [21]) with four nested levels was used to 

analyze the data. HLMs are regression models that take into account nested sources of 

variability [21]. HLMs allow for significance testing in the same way as regular 

regression analyses do. We modeled performance for each of the three tests for each 

student (level 1), differences between students (level 2), differences between classes 

(level 3), and between schools (level 4). More specifically, we fit the following HLM:  

scoreij = testj + sensek + fluencyl + sensek*fluencyl + prei*sensek  +  prei*fluencyl 

+ student(class)i + class(school)i + schooli, 

1) 

with the dependent variable scoreij being studenti’s score on the dependent measures 

at testj (i.e., immediate or delayed posttest). Sensek indicates whether or not studenti 

received sense-making support, and fluencyl indicates whether studenti received 

fluency support. In order to analyze whether students with different levels of prior 

knowledge benefit differently from connection-making support, we included students’ 

pretest scores as a covariate (prei), and modeled the interaction of pretest score with 

sense-making support (prei*sensek), and with fluency support (prei*fluencyl). 

Student(class)i , class(school)i, and schooli indicate the nested sources of variability 

due to the fact that studenti was in a particular class of a particular school. The 

reported p-values were adjusted for multiple comparisons using the Bonferroni 

correction. We report partial η² for effect sizes on main effects and interactions 

between factors, and Cohen’s d for effect sizes of pairwise comparisons. An effect 

size partial η² of .01 corresponds to a small effect, .06 to a medium effect, and .14 to a 

large effect. An effect size d of .20 corresponds to a small effect, .50 to a medium 

effect, and .80 to a large effect. 

3.1   Effects of Connection-Making Support 

We had expected that a combination of fluency support and sense-making support for 

connection making would lead to better results than either sense-making or fluency 

support alone. The results confirm our hypothesis for conceptual knowledge: we 

found a significant interaction effect between sense-making and fluency support on 

conceptual knowledge, F(2, 351) = 3.97, p < .05, p. η² =.03, such that students who 

received both types of support performed best on the conceptual knowledge posttests. 

The main effects of sense-making and fluency support were not significant (Fs < 1). 

There was no significant interaction effect on procedural knowledge (F < 1).  

We had further predicted that WE problems would be the more effective type of 

sense-making support compared to AL problems. The results confirm this hypothesis 

for the conditions that received fluency support. Effect slices for the effect of sense-

making support (i.e., a test of the effect of sense-making support for each level of the 

fluency support factor) showed that there was a significant effect of sense-making 

support within the conditions with fluency support on conceptual knowledge, F(2, 



343) = 4.34, p < .05, p. η² =.07, but not within the conditions without fluency support 

(F < 1). Post-hoc comparisons between the Mix, AL-Mix, and the WE-Mix 

conditions confirmed that the WE-Mix condition significantly outperformed the Mix 

condition, t(341) = 2.82, p < .01, d = .32, and the AL-Mix condition t(342) = 2.20, p < 

.05, d = .26, on conceptual knowledge. In summary, WE problems are more effective 

in supporting sense-making of connections than AL problems, provided that students 

also receive fluency support.  

Finally, to verify the advantage of receiving connection-making support over the 

NL control condition, we compared the most successful condition (WE-Mix) to the 

NL condition using post-hoc comparisons. The advantage of the WE-Mix condition 

over the NL was significant on conceptual knowledge, t(115) = 2.41, p < .05, d = .27. 

3.2   Learning Effects 

To investigate whether students learned from the pretest to the immediate posttest and 

to the delayed posttest across conditions, we modified the HLM and treated pretest 

scores as dependent variables, not as covariates (i.e., prei, prei*sensek, and 

prei*fluencyl were excluded from the model in equation 1). The main effect for test 

was significant on procedural knowledge, F(2, 842) = 43.04, p < .01, p. η² =.01, and 

conceptual knowledge, F(2, 842) = 98.56, p < .01, p. η² =.11. Students in all 

conditions performed significantly better at the immediate posttest than at the pretest 

on conceptual knowledge, t(842) = 9.15, p < .01, d = .40 and on procedural 

knowledge, t(842) = 7.15, p < .01, d = .20. Similarly, students performed significantly 

better at the delayed posttest than at the pretest on conceptual knowledge, t(842) = 

13.80, p < .01, d = .60 and on procedural knowledge, t(842) = 8.70, p < .01, d = .24. 

4   Discussion and Conclusion 

We had hypothesized that students would learn most robustly about fractions when 

being supported both in making sense of connections and in fluently making 

connections between multiple representations. Our results confirm this hypothesis for 

students’ conceptual understanding of fractions: robust conceptual learning with 

multiple representations is enhanced by a combination of fluency support and sense-

making support for connection making. We did not find effects of connection-making 

support on procedural knowledge. This finding is not surprising: it is conceivable that 

making connections between multiple representations benefits students’ principled 

understanding of fractions but not their algorithmic knowledge of operations.  

The fact that we did not find main effects of sense-making support and fluency 

support for connection making, on the other hand, is surprising: it shows that each 

type of connection-making support alone is not effective, but that the combination of 

both is needed to enhance students’ conceptual understanding of fractions. This 

finding is particularly interesting because prior research on connection making has 

mostly focused on sense-making processes by supporting connection making of 

structurally equivalent elements. Our results suggest that standard sense-making 

support for connection making should be extended by also supporting fluency in 



making connections. It is possible that fluency activities allow students to deepen the 

conceptual knowledge about connections they acquired through sense-making 

activities.  

With respect to how best to support sense making, our finding that WE support 

leads to better learning than AL support demonstrates, in line with earlier research on 

connection making [13], that students need to actively create connections between 

representations. We show that a novel application of WEs is effective in supporting 

active connection making. This finding extends the existing literature on WEs by 

showing that they can help students benefit from multiple representations when used 

as a means to support sense-making of connections. 

As predicted, the advantage for combining fluency and sense-making support for 

connection making was also significant compared to the control condition who 

worked only with number lines. Number lines are often considered the most important 

graphical representation of fractions [10], which may lead teachers to use only 

number lines in fractions instruction. However, our findings show that with effective 

connection-making support, multiple representations of fractions can facilitate the 

acquisition of conceptual knowledge more so than practicing only the number line. 

Finally, our results demonstrate significant learning gains for students who worked 

with the Fractions Tutor during their regular mathematics class. The gains persist at 

least until one week after the study when we administered the delayed posttest. This 

finding extends the ITS literature by demonstrating the effectiveness of a Cognitive 

Tutor for elementary-school students. Evaluation studies with ITSs have focused far 

more on high schools and middle schools than elementary schools [18,19]. 

Furthermore, the substantial and robust learning gains are encouraging, given that 

fractions are a difficult topic for elementary and middle-school students – a fact that 

provides a major obstacle for later mathematics learning, such as in algebra [8]. Our 

ITS for fractions is effective in helping students overcome some of these difficulties. 

In conclusion, the present experiment extends the ITS and educational psychology 

literature on learning with multiple representations in several ways. First, our findings 

show that, although prior research has conceived of connection making as primarily a 

sense-making process, effective connection making involves fluency processes and 

therefore requires activities aimed at supporting sense making and activities aimed at 

supporting fluency. Second, we demonstrate that students need to be active in making 

connections between representations, and that a novel application of worked examples 

is effective in helping students to accomplish this difficult task. Third, the study 

provides insight into the type of knowledge for which connection-making support is 

beneficial. Connection-making support does not benefit students in learning to apply 

algorithms to solve procedural tasks, but it helps them acquire conceptual knowledge 

of domain principles. Finally, our findings extend the findings on the effectiveness of 

Cognitive Tutors to the younger population of elementary school students.   
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