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ABSTRACT 
Spatial skills predict students’ success in STEM domains. This 

paper aims to better understand the difficulties of students with 

low spatial skills in using interactive graphical representations. I 

present a mediation analysis with test and log data from 117 stu-

dents who worked with an intelligent tutoring system for chemis-

try. The analysis is based on (1) a knowledge component model 

that describes knowledge students acquire as they solve problems 

with graphical representations, (2) a search for features that de-

scribe students’ interactions with the representations and that are 

predictive of students’ learning gains, and (3) a structural equation 

model that tests whether these features statistically mediate the 

effect of spatial skills on students’ learning gains. Results show 

that only students’ ability to plan representations before they 

construct them mediates the effect of spatial skills on learning 

gains. This finding suggests that these students may need more 

support before they construct representations. 

Keywords 
Spatial skills, intelligent tutoring systems, interactive representa-

tions, STEM learning. 

1. INTRODUCTION 
Students’ spatial skills predict learning success in STEM domains 

[1, 2]: students with low spatial skills tend to show lower 

achievements in STEM domains and they are less likely to pursue 

careers in these domains. Spatial skills are important for STEM 

learning because many concepts in STEM domains are inherently 

visuo-spatial. For example, astronomers have to visualize the solar 

system, engineers have to visualize interactions among compo-

nents of a machine, and chemists have to visualize movements of 

atoms and electrons. To make these concepts accessible to stu-

dents, instructional materials in STEM domains tend to heavily 

rely on the use of graphical representations [5, 6]. Graphical rep-

resentations are external representations that use visuo-spatial 

features to depict domain-relevant concepts (as opposed to text or 

symbols). As a consequence, students have to make sense of 

visuo-spatial relationships depicted by graphical representations to 

understand abstract concepts in STEM domains [7].  

 

Figure 1. Graphical representations of an oxygen atom: Lewis 

structure, Bohr model, energy diagram, orbital diagram. 

Consider, for example, a student who is learning about atomic 

structure. Figure 1 shows the graphical representations that in-

structional materials typically use to illustrate atomic structure [8]. 

Lewis structures (left) show paired an unpaired valence electrons, 

Bohr models (center-left) show all electrons in atomic shells, 

energy diagrams (center-right) depict electrons in orbitals with 

their energy level, and orbital diagrams (right) show the spatial 

arrangement of non-empty orbitals. To understand atomic struc-

ture, students have to integrate the information depicted in these 

graphical representations into a visuo-spatial mental model of how 

electrons are arranged relative to the atom’s nucleus, and how 

they move according to probabilistic laws.  

Integrating such information into a mental model of the domain-

relevant concepts requires students to hold the relative location of 

the depicted objects in working memory and to mentally rotate 

these objects [9]. The cognitive load imposed by this task is argu-

ably higher for students with low spatial skills than for students 

with high spatial skills [1]. As a consequence, students with low 

spatial skills may fail at this task, which might jeopardize their 

learning success [1, 5, 9]. On the flip side, students with high 

spatial skills are more successful at integrating visuo-spatial in-

formation into mental models, and—consequently—are likely to 

show higher learning gains. Thus, the rich (in spatial skills) get 

richer (in content knowledge). 

Educational technologies such as intelligent tutoring systems 

(ITSs) hold particular promise for breaking the “the-rich-get-

richer” rule and for creating an “everyone-gets-richer” rule, be-

cause they can address the needs of students with low spatial 

skills in several ways. First, ITSs can provide interactive tools that 

students can use to construct representations while receiving assis-

tance and feedback. Such support for learning with interactive 

graphical representations can enhance learning outcomes [10], in 

particular for students with low spatial skills [11]. Second, ITSs 

have the capability to provide individualized support that adapts 

to student characteristics [12]. Adapting instructional support to 

the individual student’s spatial skills has been shown to improve 

their spatial skills [13] as well as their learning of content 

knowledge [14].  

However, before we can design ITSs that tailor support for using 

interactive representations to the needs of students with low spa-

tial skills, we first have to understand what makes this learning 

task difficult for these students. This paper presents a first step 

towards this goal. Specifically, this paper investigates the follow-

ing two questions: (1) Which aspects of problem solving with 

interactive graphical representations are more difficult for stu-

dents with low spatial skills than for students with high spatial 

skills? (2) Which of these difficulties explain why students with 



 

Figure 2. Example screen shot of a tutor problem: students construct a Bohr model of oxygen. 

low spatial skills have lower learning outcomes in chemistry? To 

address these questions, I conducted a mediation analysis that 

tested which aspects of students’ problem-solving performance 

account for the effect of spatial skills on learning outcomes. The 

mediation analysis was carried out with a data set obtained from 

an experiment with an ITS for chemistry learning in which stu-

dents had to use interactive tools to construct graphical represen-

tations of atoms. 

2. CHEM TUTOR 
The data set used in this paper was obtained from an experiment 

with Chem Tutor: an ITS for undergraduate chemistry [15]. The 

goal of Chem Tutor is to enhance learning by helping students 

understand graphical representations of abstract concepts [16]. 

Chem Tutor targets foundational concepts of introductory under-

graduate courses, such as atomic structure and bonding. The de-

sign of Chem Tutor is based on surveys with undergraduate chem-

istry students and instructors, interviews and eye-tracking studies 

with undergraduate and graduate students, and extensive pilot 

testing in the lab and the field [15]. Chem Tutor was built with 

Cognitive Tutor Authoring Tools [17], which facilitates rapid 

iterations of prototyping and pilot-testing involved in such user-

centered design approaches.  

In the present experiment, students worked with the atoms and 

electrons unit of Chem Tutor. This unit features interactive tools 

that students use to construct a variety of graphical representations 

of atoms: Lewis structures, Bohr models, energy diagrams, and 

orbital diagrams (see Figure 1). The tutor problems are structured 

as follows. First, students are prompted to think about the proper-

ties of the atom. They can use the periodic table to look up infor-

mation about the atom (e.g., oxygen has eight electrons). Second, 

students are prompted to plan what the given representation will 

look like (e.g., the Bohr model of oxygen should show two 

shells). Third, students use an interactive tool to construct the 

representation of the given atom. Students receive error-specific 

feedback on their interactions (e.g., “The Bohr model shows all of 

the electrons, not only the valence electrons”). Students have to 

construct a correct graphical representation before they can con-

tinue. Fourth, students are prompted to make inferences from the 

given graphical representation about the atom (e.g., the number of 

valence electrons allow to approximate the number of bonds the 

atom forms). Figure 2 shows an example tutor problem in which 

students construct the Bohr model of an oxygen atom. The inter-

face of the problems builds up step-by-step, as shown in Figure 3.  

 

Figure 3. Sequence of screen shots showing how the interface 

updates step by step as students construct an Energy diagram. 



3. EXPERIMENT 
The experiment investigated whether Chem Tutor helps under-

graduate students learn chemistry. For a detailed description of the 

experiment, refer to [18]. 

3.1 Participants 
117 undergraduate students from a university in the mid-western 

United States participated in the experiment. 79% of the students 

were enrolled in general chemistry for non-science majors. Ac-

cording to the instructor of this course, these students had no 

experience with the graphical representations used in the Chem 

Tutor unit, with the exception of the common Lewis structure. 

13.4% of the students were enrolled in general chemistry for 

science majors, 2.5% were enrolled in advanced general chemis-

try. According to the instructors of these courses, these students 

had experience with all graphical representations used in the 

Chem Tutor unit. The remaining 5% of the students were not 

currently enrolled in a chemistry course.  

3.2 Assessments 
Students’ chemistry knowledge was assessed three times: before 

they started working with Chem Tutor (pretest), after they com-

pleted half of the tutor problems (intermediate posttest), and after 

they completed all tutor problems (final posttest). Three isomor-

phic test forms were used: they asked structurally identical ques-

tions but used different problems (e.g., with different atoms). The 

order in which students received the test forms was counterbal-

anced. The tests assessed reproduction and transfer of the chemis-

try content covered in Chem Tutor. Reproduction items used a 

format similar to the Chem Tutor problems. Transfer items asked 

students to apply the knowledge Chem Tutor covered in ways 

they had not been asked to do in the Chem Tutor problems. The 

tests included items with and without representations. In addition, 

spatial skills were assessed with the Vandenberg & Kuse mental 

rotation ability test [19]. This test presents students with a draw-

ing of an object and asks them to identify which of four other 

drawings show the same object. This task requires spatial skills 

because students have to mentally rotate the given object to align 

it with the comparison objects. This test was chosen because it has 

been used in prior research on the impact of students’ spatial skills 

on STEM learning [1, 2, 4, 5, 7].  

3.3 Procedure 
The experiment took place in the laboratory and involved two 

sessions of about 90 minutes each. Sessions were scheduled no 

more than three days apart. In session 1, students first completed 

the mental rotation test and the chemistry pretest. They then re-

ceived an introduction into using Chem Tutor. Next, they worked 

through half of the problems in Chem Tutor’s atoms and electrons 

unit. At the end of session 1, students took the intermediate chem-

istry posttest. In session 2, students worked through the remainder 

of the tutor problems. At the end of session 2, they took the final 

chemistry posttest. All students worked on the tutor problems at 

their own pace and were able to finish the assigned tutor problems 

in the available time.  

3.4 Results 
Results from the analysis of the test data show that there were 

significant learning gains on the chemistry knowledge test, 

F(2,230) = 6.18, p < .01. A regression of students’ spatial skills on 

learning gains (i.e., performance on the posttest, controlling for 

pretest performance) showed that spatial skills were a significant 

predictor of learning gains (β = .34, p < .01), such that students 

with high spatial skills showed higher learning gains than students 

with low spatial skills.  

4. OPEN QUESTIONS 
The finding that students with lower spatial skills had lower learn-

ing gains as the result of an intervention that relies on graphical 

representations is not surprising: it aligns with prior research on 

the role of spatial skills in STEM learning [1, 4, 5, 9]. It is con-

ceivable that working with interactive graphical representations 

requires students to make sense of how abstract properties of 

atoms can be translated into visuo-spatial elements of graphical 

representations. It is well documented that this is more difficult 

for students with lower spatial skills [1, 4, 5, 9].  

A first question that remains thus far unanswered, however, is 

how these difficulties affect how students interact with tutor prob-

lems. There are several aspects of the problems in Chem Tutor 

that may be more difficult for students with low spatial skills. 

First, these students may struggle with the first part of the tutor 

problems: identifying properties of atoms. Students with low 

spatial skills may have trouble retrieving facts that describe prop-

erties of atoms because they cannot imagine what an atom looks 

like. They might also struggle in using resources such as the peri-

odic table to retrieve this information. Second, students with low 

spatial skills may struggle with the planning part of the tutor prob-

lems, because this step requires them to think about how proper-

ties of an atom can be visualized. Third, it is possible that these 

students struggle more when constructing graphical representa-

tions because they have to translate text-based information into 

visuo-spatial elements of the graphical representations. Finally, it 

is possible that these students struggle more in using representa-

tions to make inferences about the atom because this requires 

them to imagine how the visualized properties determine dynamic 

behavior of electrons (e.g., electron movement) and of atoms 

(e.g., tendency to form bonds).  

A second question that remains open is how these difficulties 

relate to learning gains. While it is possible that all of the aspects 

just described are more difficult for students with low spatial 

skills, some difficulties may play a larger role than others in ex-

plaining why these students show lower learning gains. Under-

standing which difficulties account for the fact that students with 

lower spatial skills show lower learning gains will enable us to 

provide more appropriate support for these students. 

5. FEATURE SELECTION 
To investigate why spatial skills predict students’ learning gains 

as they work with interactive graphical representations, I used a 

structural equation model to conduct a mediation analysis. Struc-

tural equation models provide a unified framework to test media-

tion hypotheses, estimate total effects, and separate direct from 

indirect effects. The first step in constructing a structural equation 

model is to determine candidate mediator variables to be included 

in the model. To do so, I first investigated how best to represent 

the knowledge students acquire as they are working on the tutor 

problems by comparing different knowledge component models. 

Second, I used the knowledge component model to generate a 

number of features that describe student performance during prob-

lem solving. Third, I searched for features that are predictive of 

learning outcome, using linear regressions.  

5.1 Knowledge component model 
First, I constructed a knowledge component model that adequately 

describes knowledge students acquire when working with interac-

tive representations to learn about atomic structure. Knowledge 

components are “acquired units of cognitive function or structure 

that can be inferred from performance on a set of related tasks” 

[19]. I contrasted the following knowledge component models:  



1. A single-step baseline model that treats all problem-solving 

step as one skill; 

2. A step-type model that does not distinguish between the 

graphical representation used in the given problem but dis-

tinguishes between step types (i.e., providing information 

about atoms, planning the graphical representation of the at-

om, constructing graphical representations, and making in-

ferences about the atom; see Figures 2 and 3); 

3. A representation-construct model that distinguishes between 

the graphical representation used in the given problem (i.e., 

Lewis structure, Bohr model, energy diagram, and orbital di-

agram; see Figure 1) for the step in which students are asked 

to construct the graphical representation, but that does not 

distinguish between graphical representations for the remain-

ing step types; 

4. A step-type / representation model that distinguishes be-

tween the graphical representation used in the given problem 

for each step types except for providing information about 

atoms. 

Each model was evaluated as to how well it predicts student be-

havior during problem solving. Following standard practice in ITS 

research [19, 20], I considered each step in a given tutor problem 

as a learning opportunity for the particular knowledge component 

involved in the step. Student behavior was assessed based on 

whether a student solved the step correctly (i.e., without hints and 

without errors). To evaluate model fit, I used the Additive Factors 

Model (AFM) in the PSLC DataShop [20]. As a metric for model 

fit, I used 3-fold item-stratified cross validation [21]. Table 1 

shows the root mean squared errors (RMSEs) for each knowledge 

component model. The step-type / representation model had the 

best model fit. Hence, this knowledge component model was used 

as a basis to generate features that describe students’ learning 

about atomic structure with interactive graphical representations. 

Table 1. RMSEs for knowledge component models. 

Knowledge com-

ponent model 

Knowledge 

components 

Item-stratified RMSE 

(lower is better) 

Single-step  base-

line model 
1 0.464794 

Step-type model 4 0.375733 

Representation-

construct model 
7 0.372553 

Step-type / repre-

sentation model 
13 0.363908 

5.2 Feature generation 
Based on the step-type / representation model, I generated features 

that describe how students interact with the tutor problems. Stu-

dents’ problem-solving behaviors can be described based on the 

outcome (proportion of incorrect first attempts, proportion of hint 

requests at the first attempt, proportion of total incorrect attempts, 

proportion of total hint requests) and based on durations (time 

spent per step in total, time spent on steps with first correct at-

tempt / steps with at least one incorrect attempt, time spent before 

first attempt, time spent before first attempt if it was a correct / 

incorrect attempt). Additionally, when students use an interactive 

tool (e.g., to construct representations) they can make a large 

variety of errors. Thus, the number of different error types when 

constructing representations is another measure of interest. To 

generate features, I computed these metrics for each knowledge 

component, yielding a total of 134 features (i.e., four outcome-

based and six duration-based set of metrics for each of the 13 

KCs, plus number of mistake types for constructing each of the 

four representations). 

5.3 Search for predictive features 
Since it is impractical to include all 134 features in a structural 

equation model, it was necessary to narrow down the number of 

features to consider. The most interesting features when investi-

gating the role of spatial skills on learning outcomes are those 

features that are predictive of students’ learning outcomes. To find 

predictive features, I conducted linear regressions on each set of 

features (i.e., proportion of correct steps, time spent on correct 

steps, etc.), computed for the given KCs. It was necessary to con-

duct separate regressions for each set of feature because the fea-

ture sets are not independent of one another. For example, the 

total incorrect attempts subsume the first incorrect attempts. 

Learning outcomes on the final posttest was the dependent varia-

ble in each linear regression model. Pretest performance was 

included as a predictor in all regression models. Regressions were 

conducted using 10-fold cross-validation. I used the results from 

the regression analyses to determine what characterizes predictive 

features. To do so, I compared the standardized coefficients and 

significance of features based on the metric they used and based 

on the KC they described. Table 2 shows the results for the re-

gression analyses. 

The goal of the selection procedure was to identify a set of predic-

tive features that are independent of one another. Overall, features 

based on knowledge components related to planning, constructing, 

and making inferences were predictive of learning outcomes. 

However, features based on retrieving information about atoms 

were not predictive of learning outcomes. Thus, atoms steps were 

excluded from further analysis. Among the outcome-based fea-

tures, those using proportion of incorrect first attempts and those 

using proportion of total incorrect attempts were equally predic-

tive of learning outcomes. However, when excluding atoms steps, 

the features based on proportion of incorrect total attempts were 

slightly more predictive than those based on incorrect first at-

tempts. Thus, features based in incorrect total attempts were se-

lected for further analysis. Features based on proportion of hint 

requests at first attempt and proportion of total hint requests had 

low predictive value because hint use was generally low. Thus, 

these features were excluded. Features describing error types 

while constructing representations had high predictive value. 

Thus, these features were selected for further analysis. Among the 

duration-based features, those based on time spent on steps with 

at least one incorrect attempt as a metric were selected because 

they were more predictive than the other duration-based features.  

Based on these findings, the following variables were selected for 

the structural equation model: 

 Average duration of planning steps with at least one incorrect 

attempt (plan_timeError) 

 Average duration of representation-construction steps with at 

least one incorrect attempt (repr_timeError) 

 Average duration of inference steps with at least one incor-

rect attempt (infer_timeError) 

 Proportion of total incorrect attempts on planning steps 

(plan_incorrect) 

 Proportion of total incorrect attempts on representation-

construction steps (repr_incorrect) 

 Proportion of total incorrect attempts on inference steps 

(infer_incorrect) 

 Number of error types on representation-construction steps 

(repr_errorTypes) 



Table 2. Standardized coefficients for mediators in regression models, using color gradients to illustrate the strength of association 

with performance on the final posttest. 

predictor outcome-based features duration-based features 

 

total  

incorrects 

incorrect 

1st attempt 

error-

Types 

total step 

duration 

correct step 

duration 

error step 

duration 

before 1st 

attempt 

before 1st 

correct 

before 

1st error 

pretest 0.275 0.281 0.307 0.364 0.356 0.258 0.334 0.372 0.305 

atom -0.002 -0.027 
 

0.013 0.009 -0.076 0.006 -0.007 -0.054 

planning-

Bohr 
0.112 0.082 

 
-0.137 0.018 -0.039 0.068 0.024 0.016 

planning-

Energy 
-0.393 -0.112 

 
-0.163 -0.001 0.230 0.075 0.036 0.025 

planning-

Lewis 
-0.116 -0.114 

 
-0.025 -0.006 -0.048 -0.118 -0.093 -0.046 

planning-

Orbital 
0.018 0.112 

 
-0.004 0.112 -0.118 -0.066 0.07 -0.071 

construct-

Bohr 
-0.028 0.230 -0.201 -0.080 -0.053 -0.050 0.031 -0.103 0.062 

construct-

Energy 
-0.030 -0.174 -0.093 0.269 -0.144 0.003 0.087 -0.086 -0.155 

construct-

Lewis 
0.203 -0.053 -0.169 -0.109 0.025 -0.113 -0.077 0.029 -0.158 

construct-

Orbital 
-0.028 -0.119 0.139 0.056 0.045 -0.166 -0.211 0.064 -0.202 

inference-

Bohr 
-0.030 0.011 

 
-0.080 -0.138 -0.114 -0.017 -0.046 0.059 

inference-

Energy 
-0.121 -0.064 

 
0.269 0.196 0.091 0.121 0.064 0.116 

inference-

Lewis 
0.071 0.040 

 
0.169 0.013 -0.093 -0.023 0.025 0.053 

inference-

Orbital 
-0.140 -0.147 

 
-0.107 -0.044 -0.106 0.075 0.039 0.010 

Average of 

absolute 

values 

0.112 0.112 0.182 0.132 0.083 0.108 0.094 0.076 0.095 

 

6. STRUCTURAL EQUATION MODEL 
The goal of the structural equation model was to investigate why 

students with low spatial skills show lower learning gains. The 

structural equation model allows testing whether students’ prob-

lem-solving behaviors statistically mediate the effect of spatial 

skills on learning gains. To carry out this analysis, I considered 

the variables that I identified as predictive of students’ learning 

outcomes as potential mediators of the effect of spatial skills on 

learning outcomes at the final posttest, controlling for pretest. 

6.1 Model Search 
Since there are many models that might describe the nature of the 

effect of spatial skills on learning outcomes, I conducted a model 

search. Because a factor analysis indicated that the chemistry 

content pretest and the mental rotation ability test load onto sepa-

rate factors that correlate weakly, I assumed that pretest and spa-

tial skills are independent. I assumed that pretest is prior to the 

mediators and to the final posttest, that spatial skills are prior to 

the mediators and to the final posttest, and that mediators are prior 

to the final posttest. For the mediators, I assumed that planning is 

prior to constructing representations, which is prior to making 

inferences. Even under these constraints, there are at least 249 

distinct models that are consistent with these assumptions. Figure 

4 shows the fully saturated model that would be compatible with 

these assumptions. A fully saturated model contains all possible 

edges (or “effects”) compatible with the assumptions. Therefore, 

Figure 4 illustrates the search space of models: the search was 

conducted among models that had all, none, or a subset of the 

edges in the fully saturated model.  

 

Figure 2. Fully saturated model consistent with the assump-

tions. Mediators are highlighted in blue and organized by tiers 

(1 = planning; 2 = representation-construction, 3 = inference). 



To search for models that are theoretically plausible and con-

sistent with the data, I used the Tetrad V program’s1 GES algo-

rithm along with background knowledge constraining the space of 

models searched [22] to those that are theoretically tenable and 

compatible with my assumptions [23]. In the model search, each 

edge shown in Figure 4 is evaluated as to whether including it 

yields a better model fit than not, and whether it is a statistically 

reliable effect. As Figure 4 illustrates, there are many distinct 

models consistent with the background knowledge and that are 

plausible tests for the mediation hypothesis. Yet, it is important to 

know which of these models fits the data best, because parameter 

estimates and the statistical inferences we make about them are 

conditional on the model being true. Parameter estimates of mod-

els that do not fit the data well are scientifically unreliable. Thus, 

searching for the model that is most consistent with the data en-

sures that the parameters of the model can be trusted. 

To conduct the model search at a technical level, I represented the 

qualitative causal structure of each model by a Directed Acyclic 

Graph (DAG). If two DAGs entail the same set of constraints on 

the observed covariance matrix,2 then they are empirically indis-

tinguishable. If the constraints considered are independence and 

conditional independence, which exhaust the constraints entailed 

by DAGs among multivariate normal varieties, then the equiva-

lence class is called a pattern [23, 24]. The GES algorithm is 

asymptotically reliable,3 and outputs the pattern with the best BIC 

score.4 The pattern identifies features of the causal structure that 

are distinguishable from the data and background knowledge, as 

well as those that are not. The algorithm’s limits lie primarily in 

its background assumptions involving the non-existence of un-

measured common causes and the parametric assumption that 

causal dependencies can be modeled with linear functions. The 

outcome of the model search is a structural equation model model 

that (1) is theoretically plausible, (2) fits the data well, and (3) 

contains only edges that describe statistically reliable effects. 

6.2 Results 
Figure 5 shows a model found by GES, with unstandardized pa-

rameter estimates. Table 2 shows standardized parameter esti-

mates. Each edge is evaluated as to whether it is a reliable effect 

using t-tests, assuming an alpha-level of .05. A Bonferroni correc-

tion of the p-values is not necessary in a structural equation model 

because the significance tests are not independent. Table 2 shows 

the results from these tests. Altogether, the model fits the data 

well5 (χ2 = 32.77, df = 27, p = .21).  

                                                                 

1 Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, 

contains a causal model simulator, estimator, and over 20 model 

search algorithms, many of which are described and proved as-

ymptotically reliable in [24]. 

2 An example of a testable constraint is a vanishing partial correla-

tion, e.g., XY.Z = 0. 

3 Provided the generating model satisfies the parametric assump-

tions of the algorithm, the probability that the output equiva-

lence class contains the generating model converges to 1 in the 

limit as the data grows without bound. In simulation studies, the 

algorithm is quite accurate on small to moderate samples. 

4 All the DAGs represented by a pattern will have the same BIC 

score, so a pattern’s BIC score is computed by taking an arbi-

trary DAG in its class and computing its BIC score. 

5 The usual logic of hypothesis testing is inverted in path analysis: 

a low p-value means the model can be rejected. 

Table 3. Parameter estimates (PE) for all edges and result of t-

tests assessing whether the PE is significantly different from 0.  

Edge from… to… PE t p 

infer_timeError infer_incorrect .0124 3.2999 .0013 

plan_incorrect final_posttest -.1116 -2.4706 .0150 

plan_incorrect infer_incorrect .3704 6.3202 < .001 

plan_incorrect plan_timeError 4.6959 3.7759 < .001 

plan_incorrect repr_incorrect 3.0573 9.5622 < .001 

plan_incorrect repr_timeError 19.8158 2.8253 .0056 

plan_timeError infer_incorrect -.0079 -2.2244 .0281 

plan_timeError infer_timeError .2706 3.1104 .0024 

plan_timeError repr_timeError 1.8936 4.7591 < .001 

pretest_content final_posttest 0.2293 2.9336 .0040 

pretest_content plan_incorrect -.4975 -3.1908 .0018 

repr_incorrect infer_incorrect .0329 2.6633 .0088 

repr_incorrect repr_timeError 11.068 7.529 < .001 

repr_timeError infer_timeError .0394 3.1303 .0022 

repr_timeError repr_errorTypes .0083 8.6891 < .001 

spatial_skills final_posttest .147 1.9078 .0589 

spatial_skills plan_incorrect -.4102 -2.6326 .0096 

spatial_skills plan_timeError -3.5242 -1.639 .1039 

The final model shows that spatial skills have a direct positive 

effect on students’ learning outcomes at the final posttest. Fur-

thermore, spatial skills predict students’ problem-solving behav-

iors while they are planning the graphical representation, which, 

in turn, has an effect on outcome-based and duration-based 

measures of problem-solving behaviors while they construct the 

graphical representation and while they make inferences from 

graphical representations about domain-relevant concepts. Only 

the proportion of incorrect attempts on planning steps mediates 

the effect of spatial skills on learning outcomes: plan_incorrect is 

the only variable that mediates the effect of spatial_skills on fi-

nal_posttest. The edge from spatial_skills to plan_incorrect shows 

that a student with a perfect score on the spatial skills test makes 

.4102 fewer incorrect attempts per step than a student with the 

lowest possible score on the spatial skills test. The edge from 

plan_incorrect to final_posttest means that a student who makes 

one incorrect attempt per step scores 11.16% lower on the final 

posttest than a student who makes no incorrect attempts (control-

ling for pretest performance). In sum, the mediated effect of spa-

tial_skills to final_posttest through plan_incorrect is .4102 * .1116 

= .0458. Incorrect attempts while planning representations only 

partially mediate the effect of spatial skills on learning outcomes, 

because there is a direct effect of .147 from spatial_skills to fi-

nal_posttest. Yet, making more incorrect attempts while planning 

graphical representations explains a considerable portion (about 

25%) of the effect of spatial skills on learning outcomes. 

7. CONCLUSIONS 
The goal of the mediation analysis was to investigate (1) which 

aspects about working with interactive representations are harder 

for students with low than with high spatial skills and (2) which of 

these aspects explain why students with low spatial skills show 

lower learning gains than students with high spatial skills. With 

respect to the first question, results show that spatial skills have an 

effect on all aspects of students’ problem-solving behaviors, 

http://www.phil.cmu.edu/projects/tetrad


 

Figure 3. Final structural equation model with unstandardized parameter estimates. Green values show means. 

except for looking up information about the atoms: planning, 

constructing, and making inferences from graphical representa-

tions. Spatial skills affect outcome-based measures of perfor-

mance as well as duration-based measures of performance. Yet, 

the structural equation model shows that planning has a central 

role: students’ ability to plan graphical representations has an 

impact on all further problem-solving behaviors as students con-

struct graphical representations and make inferences about do-

main-relevant concepts based on the graphical information. With 

respect to the second question, results show that planning is the 

only aspect that mediates the effect of spatial skills on learning 

gains. The difficulties that students with low spatial skills have in 

constructing representations and in making inferences may merely 

be symptomatic—they do not explain why these students show 

lower learning gains. Only the fact that students with low spatial 

skills tend to struggle more in planning representations explains 

why they benefit less from interactive representations. 

Why might students’ ability to plan graphical representations be 

so strongly affected by their spatial skills? Planning a representa-

tion requires students to describe what the representation should 

look like, based on the properties of the atom. This task requires 

them to mentally picture visuo-spatial features based on text-

based information about the atom’s properties. This takes more 

cognitive effort for students who struggle with such visuo-spatial 

tasks. Hence, these students are at risk of cognitive overload dur-

ing planning, which jeopardizes learning. Perhaps difficulties in 

planning are amplified by the fact that the interactive representa-

tion tool is not visible during the planning step (see Figure 3).  

Why might the ability to plan representations determine students’ 

learning gains? Learning with graphical representations means 

that students have to visualize new information externally while 

integrating this information with their internal mental models of 

the domain-relevant concepts [26]. Planning might play a central 

role because it helps students organize their initial mental model 

of the domain-relevant concepts. Having a well-organized initial 

mental model might facilitate integration of new information into 

this model: learning occurs as students expand and repair their 

mental models throughout the learning intervention, for instance 

by self-explaining how the new information relates to their initial 

mental models [27].  

In summary, the findings from the mediation analysis shed light 

into the broader theoretical question of how spatial ability affects 

learning outcomes in STEM. Spatial skills seem to be important 

because students’ benefit from interactive representations depends 

on their ability to mentally visualize abstract concepts before they 

use an external representation to visualize the concept. Mental 

visualization may play a key role in students’ learning of abstract 

concepts because it allows students to integrate new information 

into their mental models. These findings also yield new hypothe-

ses about the practical question of how best to support students 

with low spatial skills. These students might benefit from receiv-

ing additional assistance in planning graphical representations. 

They might benefit from seeing the interactive representation tool 

during the planning steps, so that they can more easily visualize 

the representation. They may also benefit from receiving exam-

ples of successful planning. It would be interesting to investigate 

whether such support increases learning gains for students with 

low spatial skills. In light of the interpretation that planning is so 

important because it helps students organize their initial mental 

models, it would be interesting to conduct a think-aloud study to 

assess whether, indeed, helping students plan representations 

facilitates mental model integration. 

Several limitations of the present analysis need to be discussed. 

First, performance on planning steps only partially mediates the 

effect of spatial skills on learning outcomes. Thus, there might be 

other mediators that we did not assess. Further research is needed 

to investigate other aspects of problem solving that explain why 

students with low spatial skills tend to show lower learning gains. 

Second, the data is correlational: it is impossible to randomly 

assign students to having “low” or “high” spatial skills. As in any 

correlational data set, there may be other unknown factors that 

affect the effects of interest. Third, the structural equation model 

assumes linear relations between the variables in the model. This 

assumption is reasonable but not infallible. Finally, the analysis is 

based on a sample of 117 students. Even though that is sizable 

compared to many ITS studies, model search reliability increases 

with sample size, but decreases with model complexity. Hence, it 

is impossible to put confidence bounds on finite samples [21].  

To conclude, the mediation analysis presented in this paper yields 

new insights into why students with lower spatial skills struggle in 



learning with interactive graphical representations. It seems that 

planning representations is a crucial aspect of learning success. 

This finding yields new hypotheses about what types of interven-

tions these students may benefit from. Even though the present 

paper merely presents a first step towards better understanding the 

mechanisms that underlie the “the-rich-get-richer” rule in STEM 

domains, it may help us address the unfortunate fact that students 

with low spatial skills tend to show lower achievements in STEM 

domains and they are less likely to pursue careers in these do-

mains. In other words, this paper is a first step towards creating an 

“everyone-gets-richer” rule for STEM learning. 
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